|  Formulations of Quantum Theory | 
In General
  > s.a. representations; stochastic quantum mechanics;
  phase space approach and wigner functions.
  * Approaches: The main ones are
    canonical quantization (including geometric and group quantization, and for
    quantum field theory also covariant quantization), path integral, and stochastic
    quantization; They are known to be equivalent for some classes of systems.
  * Some alternatives: In the canonical
    formulation, one can use different types of Hilbert spaces or different representations
    of the observable algebra; And one can use non-canonical formulations of quantum theory;
    > see modified formulations.
  @ Comparisons:
    Mansfield AP(87) [for strings];
    Tuynman JMP(87);
    Fukutaka & Kashiwa AP(88);
    Panfil MPLA(89);
    Shiekh CJP(90);
    Landsman & Linden NPB(91);
    De Jonghe PLB(93);
    Rédei SHPMP(96) [von Neumann's point of view];
    Styer et al AJP(02)mar;
    Ali & Englis RVMP(05)mp/04 [rev];
    Sternheimer LMP(05) [quantization as functor and deformation];
    David a1211-ln;
    Heunen a1412 [classical reformulation].
  @ Star quantization: Alcalde JMP(90);
    Hakioglu & Dragt JPA(01)qp [Moyal-Lie];
    > s.a. deformation quantization.
  @ Hydrodynamic formalism: Madelung ZP(26);
    Takabayasi PTP(53);
    Jánossy FP(73),
    FP(74),
    FP(76);
    Sonego FP(91);
    Mita AJP(01)apr;
    Chavoya-Aceves qp/02-wd;
    Holland AP(05)qp/04 [particle/wave methods];
    Spera a0902;
    Hushwater a1005;
    Chiarelli a1205 [including system with local noise];
    Kodama & Koide a1412 [and stochastic quantization];
    Sanz FP(15)-a1501 [role of the phase];
    Renziehausen & Barth a1806 [Bohmian mechanics];
    > s.a. interference;
      interpretations; pilot wave.
  @ Complex formulations:
    Nielsen & Ninomiya in hp/06,
    Nagao & Nielsen PTEP(13)-a1205 [future-included / not excluded];
    > s.a. modified formulations [non-Hermitian];
      quantum oscillators.
  @ Other formulations:
    Ralston a1203 [without Planck's constant];
    Girotti 13 [functional formulation];
    Brunet a1305 [without the notion of state];
    Wallace a1604
      [without projection postulate or eigenvalue-eigenvector link];
    Castellani IJQI-a1810 [history operator];
    Gouba a1912-ln [recent trend].
  @ Related topics: Haag CMP(96);
    Olavo qp/96;
    Gray qp/97,
    Sutherland FP(98) [density formalism];
    Corbett & Durt qp/02,
    SHPMP(09)
      [in terms of non-standard, quantum real numbers];
    Anderson & Wheeler IJGMP(06)ht/04 [biconformal spaces];
    Singh gq/04
      [without spacetime, non-commutative Hamilton-Jacobi];
    Gozzi & Mauro AIP(06)qp [dimensional reduction of Koopman-von Neumann];
    Coecke CP(10)-a0908 [alternative to Hilbert-space formalism];
    Abramsky Syn-a0910,
    a0910 [physical systems as Chu spaces];
    Aerts & Sozzo LNCS(12)-a1204 [Quantum Model Theory (QMod)];
    Weinberg PRA(14)-a1405 [based on density matrices];
    Hickey & Gour JPA(18)-a1801 [measures of imaginarity];
    > s.a. quantum systems [non-commutative variables];
      quaternions.
  > Canonical and related approaches:
    see Affine and Algebraic Quantum Theory;
    canonical quantization; hilbert space [including rigged];
    operator theory.
  > Other main approaches:
    see histories-based; modified versions [including non-Hamiltonian];
    path integrals; quantum computing;
    quantum theory [books].
Techniques and Related Concepts
  > s.a. clifford algebra; geometric aspects;
    observers; quantum states and systems.
  * Information theory: 2015, Two approaches
    have been pursued with the goal of understanding quantum theory in information-theoretic
    terms, the "device-independent" framework characterizing quantum correlations
    in terms of conditional probability distributions, and the characterization of quantum
    theory among the allowed "general probabilistic theories".
  * Ambiguities: Ambiguities in quantization may arise
    because of different choices of Lagrangians, operator orderings, representations, complex structures...
  @ Ambiguities, surprises: Redmount et al gq/99;
    Gieres RPP(00)qp/99;
    Cisło & Łopuszański JMP(01)mp/00 [1+1 sho with different Ls];
    de Souza Dutra JPA(06)-a0705 [orderings and representations];
    > s.a. duality; quantum systems.
  @ As an evolution problem: Yajima CMP(87) [solutions of initial-value problem];
    Busch & Lahti FP(89) [past and future of a system];
    Gergely AP(02)ht/03 [Hamiltonian form];
    > s.a. schrödinger equation.
  @ Lagrangian: Dyson AJP(90)mar,
    Hojman & Shepley JMP(91) [need];
    Acatrinei JPA(04)ht/02 [examples without];
    Sharan & Chingangbam qp/03 [as connection 1-form];
    Deriglazov PLA(09) [singular Lagrangian];
    Wharton a1301.
  @ Linearity: Jordan PRA(06)qp/05;
    Holman qp/06 [assessment of arguments];
    Jordan JPCS(09)qp/07;
    Ercolessi et al IJMPA(07)-a0706 [alternative linear structures on TQ];
    Jordan PRA(10)-a1002 [comment on tests];
    Bassi et al a1212-FQXi [is it an exact principle?];
    > s.a. non-linear quantum mechanics.
  @ With gauge freedom: Wawrzycki CMP(04)mp/03,
    mp/03-conf [covariance];
    Isidro & de Gosson MPLA(07)qp/06 [Abelian gerbe over phase space];
    > s.a. gauge.
  @ Stochastic: 
    Comisar PR(65) [as Brownian motion];
    de la Peña-Auerbach JMP(71) [with spin];
    Guerra & Marra PRD(84);
    Garbaczewski PRD(86) [H atom];
    Garbaczewski & Vigier PRA(92);
    Gillespie PRA(94) [argument against Markov process];
    Garbaczewski & Olkiewicz PRA(95) [argument for; + comments];
    Fernández de Córdoba et al a1304 [thermodynamical approach, gravitationally-induced irreversibility];
    > s.a. stochastic process and quantization.
  @ From equations of motion: Ho et al PRL(07) [and model phase transition];
    Kochan IJGMP(10)-ht/07.
  @ From classical ensemble: Parwani JPA(05) [using uncertainty measure];
    Hegseth a0704 [using imperfect information];
    > s.a. quantum foundations; Rokhsar-Kivelson Point.
  @ Topological quantization: Nettel et al RPMP(09)-a0801
      [based on Maupertuis' formalism for classical mechanics];
    Arciniega et al JGSP(12)-a1201 [for a free massive bosonic field];
    > s.a. quantum oscillators.
  @ Integral quantization: Tao CTP(11)-a1010 [and Berry phase];
    Bergeron & Gazeau AP(14) [two basic examples].
  @ Related topics: Zabey FP(75) [reconstruction theorems];
    Gudder IJTP(92) [in terms of measurement and influence function];
    Sudarshan PRA(94)
      [composite and unstable systems, scattering theory];
    Ni qp/98 [i and non-commutativity];
    Caticha FP(00)qp/98 [inner product and histories];
    Coecke AIP-qp/05-ln [with picture calculus];
    Mohrhoff IJQI(09)qp/06 [from stability of matter];
    Hewitt-Horsman & Vedral NJP(07) [Deutsch-Hayden approach];
    Müller & Ududec PRL(12)-a1110
      [computational reversibility, self-duality, and non-locality];
    Hardy PTRS(12)-a1201 [operator tensor formulation];
    Vacca & Zambelli PRD(12)-a1208 [effective Hamiltonian action];
    Ziaeepour a1305 [in symmetry language];
    Brooker a1308 [theory of discrete extension];
    Feldmann a1312 [information theory];
    Baez & Pollard a1311 [statistical analogy, quantropy];
    Palmer a1502,
    a1605 [invariant set theory];
    Chiribella & Yuan I&C(16)-a1504 [information-theoretic approaches]; Karuvade et al a2101 [a changing inner product].
  > Related concepts:
    see axioms; causality; entropy;
    locality; momentum; origin of quantum theory;
    probability in physics; topology;
    Unitarity.
  > Techniques: see categories in physics;
    computational physics; graph theory in physics;
    green functions; Groupoid [Schwinger's picture];
    hamilton-jacobi theory; logic [quantum logic];
    matrix; Perturbation Methods;
    Propagator; Schwinger's Action Principle;
    symmetry in quantum physics [including reduction].
Application to Other Fields
  @ References: Aerts & Czachor JPA(04)qp/03 [quantitative linguistics].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 jan 2021