|  Hilbert Space | 
In General
  > s.a. functional analysis; operator.
  $ Def: A complete inner product
    space, over a field which is usually \(\mathbb R\) or \(\mathbb C\).
  * History: The theory was motivated by the
    development of quantum physics, but it is now an important tool in functional analysis.
  * Remark: The inner product is a special
    case of the action of elements of the dual space, ψ(ψ')
    = \(\langle\)ψ|ψ'\(\rangle\).
  * Separable: One in which all complete
    orthonormal sets are countable.
  * Operations on Hilbert spaces:
    > see Direct Sum; tensor product.
  @ Books: Riesz & Nagy 55;
    Von Neumann 55;
    Cirelli 72;
    Reed & Simon 72;
    Halmos 82;
    Debnath & Mikusiński 05;
    Hansen 06 [II].
  @ Different realizations: Schenker & Aizenman LMP(00)mp [functions on a graph];
    Kyukov IJMMS(05)a0704 [and linear algebra and differential geometry on a Hilbert space];
    > s.a. Holomorphic Functions.
  @ Related topics: Hu & Yu a0705-wd [infinite-dimensional, Schmidt decomposition theorem];
    Bengtsson & Życzkowski a1701-ch [discrete structures in finite Hilbert spaces];
    > s.a. complex structure.
In Physics > s.a. Koopman-von Neumann Formalism;
  modified quantum mechanics [including discrete and real Hilbert space];
  space of connections.
  * Non-relativistic quantum mechanics:
    The usual one is L\(^2({\mathbb R}^n,{\rm d}^n x)\) over \(\mathbb C\), but other
    choices are possible (> see Bohr
    Compactification), and necessary if the classical configuration space is
    different; Notice that, e.g., L\(^2({\mathbb R}^2,{\rm d}^2 x)\) is isomorphic
    to L2(\(\mathbb R\), dx) ×
    L2(\(\mathbb R\), dx)
    [@ in Reed & Simon 72].
  * Linear field theory: Given a
    phase space (Γ, Ω) with a complex structure J, compatible
    with Ω in the sense that μ( · , · ):=
    Ω( · , J · ) is a positive-definite inner
    product (Kähler structure), define
\[\langle \cdot , \cdot \rangle:= (2\hbar)^{-1} \mu(\cdot,\cdot) + {\rm i}\,(2\hbar)^{-1} \Omega(\cdot,\cdot)\;.\]
  @ General references: Mostafazadeh CQG(03)mp/02 [space of solutions of Klein-Gordon field theory];
    Saller ht/05 [for unstable particles];
    Dutkay & Jorgensen JMP(06) [multi-scale problems];
    Barbero et al CQG(17)-a1701 [for systems with boundaries, and trace operators];
    Pollack & Singh a1801 [emergence of a space lattice].
  @ In quantum mechanics: Brunner et al PRL(08) [testing the dimension];
    Amrein 09;
    Fields Axi(14)-a1205 [physical systems do not have well-defined Hilbert spaces];
    Brunet Axioms(13)-a1309 [motivation, using orthomatroids];
    Gallone 15; Curcuraci a1708 [motivation];
    Hoff da Silva & Caires da Rocha a2105 [representation theory, role of continuity];
    > s.a. canonical approach; axioms for quantum theory;
      quantum states.
  @ Field theories:
    Okołów a2102 [metrics of fixed signature].
Rigged Hilbert Space > s.a. formulations of quantum mechanics
  / dirac quantization; Perturbation Methods.
  * Idea: A (Gel'fand) triplet,
    consisting of a Hilbert space \(\cal H\) together with a choice of dense subspace
    Ω and its dual Ω* (Ω ⊂ \(\cal H\) ⊂ Ω*), and
    a map η: Ω → Ω*, the rigging map.
  * Applications: Time irreversibility
    in quantum mechanics; Refined algebraic quantization for systems with constraints.
  @ General references: de la Madrid EJP(05)qp [pedestrian intro];
    Celeghini a1502-conf [constructive presentation];
    Celeghini et al a1907 [and special functions and Lie groups];
    Káninský a2007 [symplectic transformations and observables].
  @ Examples: Castagnino et al IJTP(97)qp/00 [inverted oscillator];
    de la Madrid JPA(02)qp/01 [Schrödinger equation],
    et al FdP(02)qp/01 [continuous spectrum],
    IJTP(03)qp/02-proc [free particle];
    de la Madrid JPA(04)qp [1D rectangular barrier];
    Celeghini et al a1711 [and representations of SO(2)].
  @ Irreversibility: Schulte et al qp/95;
    Bohm et al IJTP(99)qp/97;
    Bohm PRA(99)qp,
    & Harshman LNP(98)qp;
    Gadella & De La Madrid IJTP(99);
    Bohm & Scurek in(00)qp [in decays];
    > s.a. arrow of time.
  @ Related topics:
    Wickramasekara & Bohm JPA(02) [symmetries];
    Rowe & Repka JMP(02)mp [coherent triplets];
    Deotto et al JMP(03)qp/02,
    JMP(03)qp/02 [in classical mechanics];
    Gadella & Gómez IJTP(03) [spectral decompositions];
    > s.a. localization; representations;
      resonances [Gamow vectors].
Other Generalized  Types of Hilbert Spaces > s.a. fock space [exponential
  Hilbert space]; generalized coherent states [on Hilbert modules over C*-algebras].
  * Projective: The set of rays
    –one-dimensional linear subspaces– of a Hilbert space; It can
    be considered as an infinite-dimensional version of the complex projective
    space \({\mathbb C}{\rm P}^n\), with a metric (and a compatible symplectic
    structure); In quantum theory, it is the space of pure states of a quantum
    system described by an operator algebra on the Hilbert space.
  @ General references: Gurevich & Hadani JSG(09)-a0705 [over finite fields, and geometric quantization];
    Gudder a2005 [finite-dimensional];
    Hsu a2007 [discrete].
  @ Projective:
    in Boya & Sudarshan FPL(91);
    Stulpe a0708 [topologies].
  @ Hilbert superspace: Valle IJTP(79) [using Grassmann numbers];
  Rudolph CMP(00).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 may 2021