|  Stochastic Quantization | 
In General
  * Idea: Quantum mechanics or
    quantum field theory is formulated as an equilibrium state of a statistical
    system coupled to a thermal reservoir in Euclidean space (see, e.g., the
    Fokker-Planck equation); This can be considered as an independent approach
    to quantum theory, or as a tool to evaluate (Euclidean) path integrals, with
    the same physical interpretation; It is used mostly for gauge field theories.
  * Remark: The real time t
    of quantum theory cannot be used as the evolution parameter of the stochastic
    process, since then one does not get the Schrödinger equation.
References
  > s.a. modified quantum mechanics [stochastic extension]; pilot-wave theory.
  @ Proposal: Nelson PR(66);
    Parisi & Wu SS(81);
    Altaisky ht/05-conf [multiscale version, wavelet-based].
  @ General: Yasue IJTP(79) [rev];
    Kracklauer PRD(74);
    Ali RNC(85);
    Mielnik & Tengstrand IJTP(80) [criticism];
    Guerra & Marra PRD(83) [and operator algebra];
    Damgaard & Hüffel PRP(87),
    ed-88;
    Klauder in(87);
    Parisi 88; Haba 99
      [r Maassen van den Brink qp/02];
    Masujima 00;
    Derakhshani a1804-PhD [without an ad hoc quantization].
  @ Related topics:
    de la Peña-Auerbach & Cetto PRD(71) [self-interaction],
    NCB(72) [diffusion coefficient];
    Smolin PLA(86) [quantum diffusion constant and inertial mass];
    Pugnetti NPB(88) [renormalization group];
    Iengo & Pugnetti NPB(88) [non-markovian regularization],
    NPB(88) [critical exponents];
    Wang PRA(88) [role of interference];
    Fliess qp/06 [quantum fluctuations];
    Mansi et al PLB(10) [and AdS/cft].
  @ Quantum mechanics and stochastic mechanics:
    Carlen & Loffredo PLA(89) [multiply connected apaces];
    Garbaczewski PLA(90),
    PLA(90);
    Schulz AdP(09)-a0807 [and Bell's inequalities].
  @ Quantum mechanics from stochastic metric fluctuations:
    Bergia et al PLA(89);
    Calogero PLA(97).
Variations
  *  Stochastic variational method:
    A reformulation of Nelson's stochastic quantization method from the point of view
    of a variation principle.
  @ General references: Beck ht/03-proc [chaotic quantization and the standard model of particle physics];
    Kazinski a0704
      [deformation and relativistic diffusion equation];
    Hüffel IJBC(08)-a0710-conf [with non-linear Brownian motion as underlying stochastic process];
    Kobayashi & Yamanaka PLA(11)-a1007 [extension to thermo field dynamics];
    Kuipers a2101,
    a2103 [on Lorentzian manifolds].
  @ Stochastic variational method:
    Yasue JFA(81);
    Koide & Kodama PTEP(15)-a1306 [complex Klein-Gordon field];
    Koide et al a1406 [electromagnetic field];
    Yang a2102 [new variational principle, based on information measures].
Examples, Specific Theories > s.a. boundaries;
  semiclassical general relativity [stochastic].
  @ Quantum mechanical systems: 
    Durran et al JMP(08) [atomic elliptic states];
    Nicolis a1405 [1D particle, and supersymmetry].
  @ Ising model:
    Bérard & Grandati IJTP(99).
  @ Fermions: Guerra & Marra PRD(84);
    Horsley & Schoenmaker PRD(85);
    Garbaczewski FdP(90) [neutral spin-1/2];
    Efremov IJTP(19)-a1804 [massive].
  @ Electrodynamics: Claverie & Diner IJQC(78);
    Davidson JMP(81);
    Puthoff PRA(89);
    Hüffel & Kelnhofer PLB(04)ht/03 [= path integral].
  @ Gauge theory: Hüffel & Kelnhofer AP(98)ht [Yang-Mills];
    Masujima 00;
    Zwanziger PRD(03)ht/02;
    Kapoor MPLA(19)-a1811 [axial vector].
  @ Quantum gravity: Prugovečki 84;
    Klauder in(86);
    Rumpf in(86);
    Miller JMP(99) [1+1];
    Moffat a1402
      [singularities in gravitational collapse, and grey holes];
    Gokler a2003 [and estimation theory];
    > s.a. approaches to quantum gravity;
  hořava gravity.
  @ Linearized gravity: Davidson JMP(82)qp/01.
  @ Scalar fields: Menezes & Svaiter PhyA(07)ht/05
      [λφ4 theory];
    Menezes & Svaiter JPA(07)-a0706 [in Einstein and Rindler spaces];
    de Aguiar et al CQG(09) [in de Sitter space];
    de Aguiar et al a0908 [at finite temperature];
    dos Reis et al PLB(19)-a1804
      [self-interacting non-minimal massive scalar field in curved spacetime].
  @ Supersymmetric theories: Farajollahi & Luckock gq/04/IJTGN [locally supersymmetric];
    Baulieu PLB(19)-a1812 [stochastic quantization].
  @ Other examples:
    Garbaczewski JPA(87) [Fermi oscillator];
    Lim & Muniandy PLA(04) [non-local fields];
    Hotta et al ht/04 [Born-Infeld theory];
    Haas IJTP(05) [time-dependent oscillator];
    Bhattacharjee & Gangopadhyay cm/05 [non-equilibrium statistical mechanics];
    Menezes & Svaiter JMP(06)ht [topological field theory];
    Scarfone JSM(07)cm [interacting particle systems];
    Menezes & Svaiter JMP(08)-a0807 [systems with complex-valued path integral weights];
    Dijkgraaf et al NPB(09) [relating field theories];
    > s.a. casimir force.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 mar 2021