|  Geometric Formulations of Quantum Theory | 
In General > s.a. geometric quantization;
  relativistic quantum mechanics; Superposition;
  symplectic structure.
  * Idea: Quantum states are
    rays in Hilbert space, and one casts the main postulates of the theory in
    terms of two geometric structures on phase space, a symplectic structure
    and a Riemannian metric; Not to be confused with ideas on a geometric origin
    of quantum mechanics.
  * Formalisms: The Rivier-Margenau-Hill
    and Born-Jordan-Shankara phase space ones are equivalent to the standard operator one.
  @ Books: Giachetta et al 05 [geometry + algebraic
      topology, see gq/04];
    Bengtsson & Życzkowski 06;
    Giachetta et al 10.
  @ General references:
    Castro FP(92) [Weyl geometry];
    Varadarajan IJTP(93) [rev];
    Klauder & Maraner AP(97)qp/96;
    Ono PLA(97) [S1 bundle];
    Wheeler ht/97-GRF;
    Faraggi & Matone PLA(98)ht,
    PLB(98)ht,
    PLB(99)ht/98,
    IJMPA(00)ht/98;
    Iliev JPA(98)qp,
    JPA(01)qp/98,
    JPA(01)qp/98,
    JPA(01)qp/98 [fiber bundles];
    Brody & Hughston PRS(98),
    JGP(01)qp/99;
    Ziegler & Fuchssteiner qp/02;
    Patwardhan qp/02 [on general spaces];
    Bracken IJTP(03) [operator version of Poisson brackets];
    Cariñena et al TMP(07)mp;
    Clemente-Gallado & Marmo IJGMP(08);
    Novello et al IJGMP(11)-a0901 [modification of euclidean structure of space];
    Ercolessi & Morandi IJGMP(12);
    Heydari a1503 [and applications];
    Ciaglia et al in(19)-a1903 [rev];
    Schwarz Sigma(20)-a1906;
    > s.a. quantum mechanics [geometric aspects].
  @ Metric on phase space, space of states:
    Alicki & Klauder JPA(96);
    Klauder qp/96,
    LNP(99)qp/98;
    Klauder qp/01;
    Mehrafarin TMP(06) [on state space];
    Hübschmann in(06)mp [holomorphic quantization on stratified Kähler spaces, overview];
    Facchi et al PLA(10) [and Fisher information];
    D'Amico et al PRL(12)-a1102 [metric on Fock space];
    Cattaruzza et al AP(19)-a1811;
    Schwarz a2102 [in terms of Jordan algebras];
    > s.a. quantum mechanics.
  @ For pilot-wave approaches:
    Koch a0901 [geometrical dual];
    Hurley & Vandyck IJGMP(13);
    Tavernelli AP(16)-a1510 [de Broglie-Bohm theory, curvature induced by the quantum potential].
  @ Formulations: Kryukov FP(06) [Hilbert manifolds and functional relativity];
    Bertram IJTP(08)-a0801 [Jordan geometry];
    Grigorescu JGSP(11)-a0905 [and configuration-space discretization];
    Reginatto JPCS(14)-a1312 [from information geometry];
    Herczeg & Waldron PLB(18)-a1709,
    Herczeg et al a1805 [contact geometry];
    Almalki & Kisil a1903 [coherent state transform and geometric dynamics];
    Schwarz a1906;
    Beggs & Majid a1912
      [Schrödinger's equation from quantum geodesics].
  @ Special topics: Sardanashvily qp/00 [evolution as parallel transport];
    Marmo & Volkert PS(10)-a1006 [transformations and dynamics, separability and entanglement];
    Karamatskou & Kleinert a1102 [quantum Maupertuis principle];
    Molitor IJGMP(12) [statistical basis];
    Clemente-Gallardo & Marmo IJGMP(15)-a1505 [Klein's program and groups of transformations];
    Artacho & O'Regan PRB(17)-a1608 [with varying external parameters];
    Elgressy & Horwitz a1704
      [stability of trajectories as expectation values of quantum operators];
    > s.a. Born-Jordan quantization; Ehrenfest
      Dynamics; mixed states; quantum states.
Related Geometric Aspects > s.a. clifford algebra;
  deformation quantization; euclidean geometry.
  @ General references: Komar GRG(76);
    Geroch ln;
    Kibble CMP(79);
    Bernard  & Choquet-Bruhat 88;
    Rzewuski RPMP(88);
    Cirelli et al JMP(90),
    JMP(90);
    Collas PLA(90);
    Dubrovin et al MPLA(90) [Kähler structures];
    Anandan FP(91);
    Dimakis & Müller-Hoissen JPA(92) [non-commutative symplectic geometry];
    Schilling PhD(96);
    Ashtekar & Schilling gq/97;
    Isidro JPA(02)qp/01;
    Cariñena et al a0707-ln [and quantum-classical transition];
    Varadarajan 07;
    Cariñena et al AIP(09)-a1209 [geometrical description of algebraic structures];
    Grabowski et al JPA(18)-a1711 [quantum dynamics in infinite dimension, using Tulczyjew triples];
    > s.a. formulations; geometric quantization.
  @ Geometry of parameter space: Álvarez-Jiménez et al AdP-a1909 [the quantum metric tensor and its classical counterpart];
    > s.a. geometric phase.
  @ Mathematical references: Todorov BulgJP(12)-a1206 [including geometric and deformation quantization].
  @ Obstructions: Gotay & Grundling RPMP(97)qp/96,
    PAMS(00)dg/97,
    et al JNS(96)dg;
    Gotay in(00)mp/98;
    > s.a. geometric quantization.
  @ Boundary formulations:
    Krtouš in(02)gq/03;
    Oeckl FP(13)-a1212 [positive formalism];
    > s.a. approaches and formulations
      of quantum field theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 feb 2021