|  Graph Theory in Physics | 
In General
  > s.a. graph theory / quantum systems.
  @ General references: Estrada a1302-ch [introduction];
    Jouneghani et al IJTP(14)-a1309 [review of quantum graphical models].
  @ Lagrangian systems: Novikov & Schvarts RMS(99)mp/00.
  @ Discretized field theories: Kan & Shiraishi JMP(05)ht/04 [QED, divergences];
    Fedorov a1809 [conservation laws];
    Padmanabhan & Sugino a2104 [Abelian gauge theory, anyons];
    > s.a. lattice field theory.
  @ Quantum mechanics on graphs: Ettinger & Hoyer qp/99 [graph isomorphisms];
    Barra & Gaspard PRE(02)cm/01;
    Blümel et al qp/02 [regular, mathematical foundations];
    Bolte & Harrison JPA(03) [form factor, spin];
    Błasiak & Horzela a0710
    ≠ Błasiak et al JPCS(10) [graph operator algebras];
    Pavičić et al JMP(10)-a1004 [graph approach to quantum systems];
    Harrison et al PRS(11) [particle statistics];
    Mintchev JPA(11)-a1106 [non-equilibrium steady states on star graphs];
    Ionicioiu & Spiller PRA(12)-a1110 [mapping graphs to quantum states];
    > s.a. cellular automaton; spin models [graph states].
  @ Graph evolution models: Dadic & Pisk IJTP(79);
    Markopoulou & Prémont-Schwarz CQG(08)-a0805 [conserved topological defects];
    Rath & Toth EJP(09)-a0808 [random graphs and self-organized critical state];
    Grindrod & Higham PRS(10);
    Arrighi & Dowek a1202 [causal dynamics];
    Arrighi & Martiel PRD(17)-a1607 [Quantum Causal Graph Dynamics];
    Kelly et al CQG(19)-a1901 [self-assembly of space, based on the Ollivier curvature].
  @ Related topics:
    Barra & Gaspard PRE(01) [classical dynamics];
    Fiorenza ACS(06)m.CT/02 [sums over graphs];
    Giorda & Zanardi PRA(03)qp,
    EPL(04)qp/03 [bosonic, entanglement and tunneling];
    Procacci & Scoppola CPAA-mp/05 [random cluster model];
    Reidys DM(08) [sequential dynamical systems];
    Cornelissen & Marcolli JGP(13) [graph reconstruction and quantum statistical mechanics];
    Cabello et al PRL(14)-a1401 [graph invariants and quantum correlations];
    Arrighi et al a2010 [quantum superpositions];
    > s.a. entangled systems [graph states];
      Virial Expansion.
  > Specific models: see Anderson
    Localization; discrete geometry models [gravity, quantum graphity];
    Polymers; supersymmetric theories;
    toda lattice.
Statistical Models
  > s.a. networks [entropy]; game theory;
  phase transitions; Power-Law Distribution;
  stochastic processes.
  @ Random walks:
    Watrous cs.CC/98-in;
    Burioni & Cassi JPA(05) [rev];
    Mendonça PRE(11)-a1106 [cover time];
    Arendt & Jost a1203/EPJB [multiple-agent consensus problem];
    > s.a. diffusion; green functions;
      random processes.
  @ Quantum walks: Farhi & Gutmann PRA(98);
    Aharonov et al qp/00-proc;
    Kendon IJQI(06)qp/03 [discrete time];
    Montanaro QIC(07)qp/05;
    Osborne PRL(08)qp/06 [approximate locality];
    Kargin JPA(10) [bounds on the mixing time];
    Higuchi et al JMI-a1207 [discrete-time evolution operators].
  @ Transport: Muelken & Blumen PRE(06)qp [quantum vs classical percolability].
  @ Random graphs, evolution:
    Barbosa et al PhyA(04) [directed];
    Lee et al NPB(04) [as Potts model];
    Lushnikov JPA(05);
    Turova JSP(06) [phase transitions];
    > s.a. ising model; networks;
      types of graphs.
  @ Emergence of continuum geometry: Bombelli et al CQG(09)-a0905 [manifolds from graphs in lqg];
    Conrady JSP(11)-a1009 [emergence of 2D space];
    Chen & Plotkin PRD(13)-a1210 [and emergent manifolds];
    Tee EPJC(21)-a1909 [new Hamiltonian with enhanced locality, and matter];
    Pugliese a2007.
  @ Quantum-gravity motivated:
    Finkel ht/06-conf [local moves and lqg];
    Kelly et al a2102 [graph regularisation of Euclidean gravity];
    > s.a. discrete geometry models.
  @ Fields on graphs: Häggström AAP(00) [percolation, phase transitions];
    Gobron a1312
      [Pfaffian representations of Ising partition function, non-planar graphs];
    > s.a. entanglement entropy; wave equation.
  @ Thermodynamics on graphs: Burioni et al JPA(00) [spectral partitions into subgraphs];
    Majka & Wislicki PhyA(04) [communication networks].
  @ Quantum field theory on graphs: Cimasoni & Reshetikhin CMP(08)-a0704 [from dimer model].
Operators
  @ General references: Requardt mp/00/JPA [spectral analysis and Connes distance];
    Kostrykin & Schrader JMP(01)mp/00 [scattering matrices].
  @ Laplacian:
    Forman Top(93) [determinant];
    Akkermans et al AP(00) [spectral determinant];
    Khorunzhy & Vengerovsky mp/00 [random graph];
    Requardt JPA(02)mp/01 [Dirac operator and Connes metric];
    Dean JPA(02) [density of states];
    Kenyon mp/02;
    Hashimoto et al JMP(03) [large graph, spectral distribution];
    Dorogovtsev et al PhyA(04) [random, spectrum];
    Braunstein et al AC(06)qp/04 [as a density matrix];
    Khorunzhiy et al AAP(06)mp/05 [random graph, tails of spectra];
    Müller & Stollmann JFA(07)mp/05 [on supercritical bond-percolation graphs];
    Kostrykin & Schrader mp/06 [inverse scattering];
    Hu DM(07) [eigenvalues, and adjacency matrix];
    Elon JPA(08)-a0804 [statistical approach];
    Schrader JPA(09) [Klein-Gordon and wave equation];
    Keller & Lenz a1101;
    Haeseler et al a1103 [infinite graphs];
    Bauer et al a1211 [spectrum];
    Majid JGP(13) [non-commutative geometry and canonical edge Laplacian];
    Anantharaman a1512 [on large graphs, quantum ergodicity];
    > s.a. types of graphs [random].
  @ Laplacian, bounds on eigenvalues: Das & Guo DM(13) [for the second power of a graph];
    Charles et al DM(13) [and non-positive eigenvalues of the adjacency matrix].
  @ Schrödinger operator: Novikov RMS(97)mp/00;
    Kostrykin & Schrader JPA(00)mp,
    RVMP(00)mp [1D];
    Gutkin & Smilansky JPA(01) [the spectrum determines the graph uniquely].
  @ Other operators: Bolte & Harrison JPA(03) [Dirac operator, spectral statistics];
    Exner a1205-fs [momentum operators];
    Dahlberg & Wehner PTRS(18)-a1805 [single-qubit operations on graph states].
Quantum Graphs
  * Idea: A quantum graph is a graph
    considered as a (singular) one-dimensional variety and equipped with a second-order
    differential Hamiltonian H (a "Laplacian") with suitable conditions
    at the vertices; They are commonly used as models of complex quantum systems, for
    example molecules, networks of wires, and states of condensed matter.
  @ General references: Dabaghian & Blümel PRE(03)qp,
    JETPL(03)qp,
    qp/03 [analytically solvable];
    Schmidt et al JPA(03) [Green functions];
    Kurasov & Nowaczyk JPA(05) [inverse spectral problem];
    Fulling m.SP/05-conf [local spectral density and vacuum energy];
    Exner et al RVMP(07) [random potential, localization];
    Fulling et al JPA(07)-a0708 [index theorems];
    Kuchment in(08)-a0802 [rev];
    Weaver a1506 [as quantum relations];
    Andrade et al PRP(16)-a1601 [Green's function approach];
    Berkolaiko a1603 [elementary intro].
  @ And other physics: Dabaghian et al JETPL(01)qp [and chaos];
    Tanner qp/05 [and quantum random walks].
  @ Spectral properties: Barra & Gaspard JSP(00)qp [level spacing distribution];
    Kuchment JPA(05)mp/04;
    Gavish & Smilansky JPA(07)-a0807 [spectral theory and length spectrum];
    Berkolaiko & Liu a1601 [simplicity of eigenvalues and non-vanishing of eigenfunctions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 apr 2021