|  Quantum Systems | 
In General > s.a. deformation
  quantization \ quantum foundations [concept of system].
  * Unstable: Used as a model for
    time-irreversible system; For example, the Friedrichs model or the Lee model;
    > s.a. particle effects [decay].
  @ Embedded eigenvalues: Hiroshima JPA(02) [functional integral].
  @ Simplest systems: Bondar et al AJP(11)apr [free particle, from properties of the Dirac delta function];
    in Nauenberg AJP(16)nov [charged particle in a homogeneous electric field];   
    Bergeron et al a1701 [pedagogical, Euclidean plane as real Hilbert space].
  @ Unstable systems: Bunge & Kálnay NCB(83);
    Horwitz & Piron HPA(93);
    Horwitz FP(95) [in relativistic quantum mechanics];
    Urbanowski OSID(13)-a1408 [effective Hamiltonians];
    Giacosa a1708-proc [some theoretical aspects and predictions];
    Giacosa a2001-proc [Lee model];
    > s.a. arrow of time [Brussels school].
  @ Potential reconstruction: Lemm et al PRL(00)cm/99 [Bayesian],
    qp/03 [using path integrals];
    Alhaidari & Ismail JMP(15)-a1408.
  @ With symmetries: Divakaran PRL(97) [specified by symmetries];
    Zeier & Schulte-Herbrüggen JMP(11)-a1012 [symmetry principles];
    Chubb & Flammia JMP(17)-a1608 [approximate symmetries, and ground space structure].
  @ Related topics: Anderson PLB(93) [equivalent systems];
    DeWitt IJMPA(98) [isolated; including decoherence];
    Barreto & Fidaleo m.OA/05 [disordered];
    Koslowski gq/06 [reduction of a theory];
    Bolonek & Kosiński qp/07,
    JPA(07) [non-local];
    Wu et al IJTP(09)-a0909 [non-conservative];
    Eisele a1204 [antilinear terms in the Hamiltonian];
    Shapere & Wilczek PRL(12)-a1207 [Lagrangians with branched Hamiltonians];
    Gudder a2009 [parts and composites].
Systems with Non-Trivial Topology
  > s.a. physical systems [dimensionality].
  * Idea: An example is
    the Berry-Hannay model on the 2n-dimensional torus; Several
    quantizations are possible, depending on the choice of values for
    topological factors; > s.a. topological phase;
    theta sectors.
  @ Bounded / confined systems: Barton et al AJP(90)aug [influence of distant boundaries];
    Garbaczewski & Karwowski mp/01;
    Dias et al CPAM(11)-a0707 [self-adjoint Hamiltonians];
    Belgiorno & Gallone JMP(09) [and non-confined limit];
    Bernard & Lew Yan Voon EJP(13) [particle constrained to a curved surface];
    Ciaglia et al IJGMP(17)-a1705 [manifolds with boundaries and corners].
  @ Constrained systems: Bloch & Rojo PRL(08) [non-holonomic];
    > s.a. first-class and second-class constraints;
      types of states [totally constrained systems].
  @ On a circle: Fülöp & Tsutsui PLA(00)qp/99 [with point interaction];
    Scardicchio PLA(02)qp/01;
    Zhang & Vourdas JMP(03)qp/05 [phase space approach];
    Ben Geloun & Klauder PS(13)-a1206,
    Ben Geloun a1210-conf [enhanced quantization];
    Przanowski et al AP(14)-a1311 [Weyl quantization and number-phase Wigner functions].
  @ On Sn:
    Dita PRA(97);
    Ikemori et al MPLA(98) [and meron solution],
    MPLA(00) [and Berry connection];
    Aldaya et al JPA(16)-a1607 [S3, non-canonical approach];
    > s.a. canonical quantization
      [particle on S2, group quantization].
  @ Time-dependent boundaries: 
    Di Martino & Facchi IJGMP(15)-a1501;
    Ginzburg a1807 [transition probabilities];
    > s.a. special potentials [infinite wells].
  @ Other compact configuration spaces:
    Rubin & Lesniewski qp/98,
    Gurevich & Hadani mp/03 [T2];
    Gurevich & Hadani mp/04 [Berry-Hannay model on T2n];
    Asorey et al IJMPA(05)ht/04;
    Oriti & Raasakka PRD(11)-a1103 [on SO(3)];
    Dolbeault et al a1303;
    Biswas & Ghosh EPL-a1908 [non-trivial torus knot].
  @ On a half-line: Gazeau & Murenzi JMP(16)-a1512,
    Gouba JHEPGC-a2005 [affine quantization];
    Al-Hashimi & Wiese a2103;
    > see Polymer Representation.
  @ Other non-trivial topology: Marques & Bezerra qp/01 [on topological defect];
    Kowalski et al PRA(02)qp [pointed plane];
    Exner RPMP(05) [configuration spaces of mixed dimensionality];
    Dürr et al JPA(07)qp/05 [and pilot-wave theory];
    Filgueiras & Moraes AP(08) [conical surface];
    Cirilo-Lombardo JPA(12)-a1204 [on a Möbius strip];
    Filgueiras et al JMP(12)-a1205 [on a cone];
    Gubbiotti & Nucci a1607 [double cone];
    > s.a. Weyl Quantization.
Other Types > see composite systems [including subsystems, atoms, many-body systems and particle + field]; discrete and finite systems [including qubits]; dissipative systems; ergodic theory and open systems; macroscopic systems [including mesoscopic, hybrid, classically chaotic]; systems with special potentials; thermodynamical systems; types of quantum field theories [coupled to atoms].
Related Topics > see analysis [fractional derivatives]; anomaly; coherent states; Crum's Theorem; curves [length]; Damped Systems; Degeneracy; quantum chaos [including Baker's map]; higher-order lagrangian theories; histories formulations [closed systems]; number theory; Stückelberg Model; Thermal Bath.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 6 mar 2021