|  Category Theory in Physics | 
In General > s.a. functors;
  logic; Structural Realism.
  * Idea (Coecke): A
    symmetric monoidal category naturally arises as the mathematical structure
    that organizes physical systems, processes, and composition thereof.
  * Examples of applications:
    Unitary representations of the Lorentz group [@ Crane
    gq/00];
    > s.a. Topos Theory.
  @ Reviews and introductions:
    Moore IJTP(98);
    Coecke in(06)-a0808,
    Coecke & Paquette a0905;
    Baez & Lauda in(11)-a0908 [n-categories];
    Beer et al a1811 [applications in physics, anyons].
  @ General references: Thomas m.AG/00-proc;
    Marcinek m.QA/00 [particle interactions];
    Oeckl JGP(03)ht/01 [generalized lattice gauge theory];
    Coecke & Lal FP(12)-a1107 [causal structures and symmetric monoidal categories];
    Lal & Teh a1404 [and physical structuralism];
    Amorim & Ben-Bassat ATMP(17)-a1601 [2 -category of Lagrangians];
    Tull a1602 [operational theories of physics];
    Veilahti a1712 [higher theory].
  @ Stacks: Sharpe ht/06-proc [and derived categories];
    Benini et al CMP(18)-a1704 [stack of Yang-Mills fields on Lorentzian manifolds];
    Berktav a1907
      [stacky formulation of general relativity, stack of Ricci-flat 3D Lorentzian metrics].
In Gravitation
  @ Classical gravity: Morava mp/04-conf [2-categories and topological gravity];
    Zuo a2007
      [general relativity with a cosmological constant].
  @ Quantum gravity / spacetime structure:
    Miković & Vojinović CQG(12) [and Poincaré 2-group];
    & Ko Sanders;
    > s.a. modified approaches to quantum gravity;
      quantum spacetime models.
In Other Field Theories
  > s.a. fiber bundles [natural bundles].
  @ References: Weatherall a1505-in [rev, theoretical structure and theoretical equivalence];
    Scholz a1607 [Weyl and automorphisms];
    Tachikawa a1712-proc.
  > Specific proposals: see theories
    beyond the standard model; types of gauge theories and
    yang-mills theories [based on Lie 2-groups].
In Quantum Theory > s.a. generalized quantum
  mechanics; Topos Theory [Butterfield-Isham-Döring].
  @ General references:
    Schlesinger JMP(99);
    Abramsky & Coecke a0808-ch;
    Harding IJTP(09);
    Filk & von Müller AdP(10)-a0907 [framework];
    Coecke & Perdrix a1004-proc [environment and classical channels];
    Bergholm & Biamonte JPA(11)-a1010 [and quantum information science];
    Abramsky & Heunen a1011 [H*-algebras and non-unital Frobenius algebras];
    Lehmann a1012;
    Heunen FP(12) [complementarity];
    Gogioso & Zeng a1501/ACS [representation theory];
    Gogioso a1501,
    Bolotin a1502 [categorical semantics];
    Coecke & Kissinger a1510,
    a1605 [overview, 2/3];
    Gogioso & Genovese EPTCS(18)-a1703 [quantum field theory];
    Tull a1902-PhD [general operational theories];
    de Ronde & Massri a2002 [pure and mixed states];
    Gogioso a1905 [diagrammatic approach];
    Heunen & Vicary 19.
  @ Categories of relations: 
    Heunen & Tull EPTCS(15)-a1506 [as models];
    Mehta & Zhang LMP(20)-a1907 [Frobenius objects].
  @ Categorical quantum mechanics: Abramsky & Heunen a1206 [and operational theories];
    Gogioso & Genovese EPTCS(17)-a1605 [infinite-dimensional],
    EPTCS(18)-a1703 [*Hilb];
    Gogioso a1709-PhD [dynamics];
    Gogioso & Genovese a1805 [and quantum field theory].
  @ n-categories: Kapustin a1004-proc [and topological field theory];
    Vicary a1207
    [2-categorical formalism for classical information, quantum systems, and their interactions];
    Benini et al a2003 [2-categorical algebraic quantum field theories].
  @ Specific types of theories: Morton TAC(06)m.QA [combinatorial model for harmonic oscillator];
    Coecke & Edwards a0808-proc [Spekkens' toy theory];
    Stirling & Wu a0909 [braided systems];
    de Ronde & Massri IJTP(18)-a1801,
    a1802,
    a1807 [logos categorical approach].
  > Specific topics:
    see fock space; particle models;
    particle statistics; quantum information
    [and 2-categories]; quantum oscillators;
    spin-statistics theorem.
In Other Disciplines
  @ References: Hines a1303-in [categorical linguistics and models of meaning];
    Blass & Gurevich BEATCS-a1807 [computer science].
"If categories start showing up in your field,
  you should have left the field five years ago."
  – Writing on the wall in one of the men's rooms at Perimeter Institute, 2002-2004.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 sep 2020