|  Deformation Quantization | 
In General
  > s.a. geometric quantization; quantum group;
  schrödinger equation [generalizations]; Star Product.
  * Idea: An approach
    to quantization in which the classical algebra of observables for a
    physical systems is replaced by a deformed algebra, with multiplication
    replaced by a (non-commutative but associative) star product; The best
    known example is the Moyal star product.
  @ Founding papers: Sternheimer, Flato, Lichnerowicz [precursors];
    Bayen et al AP(78),
    AP(78).
  @ General references:
    Bakas & Kakas pr(85);
    Fairlie & Nuyts JPA(91);
    Ubriaco MPLA(93);
    Lledó & García-Sucre JMP(96);
    Weaver CMP(97);
    Farkas LMP(00) [and affine symplectic algebras];
    Landsman CMP(03)mp/02 [Baum-Connes conjecture];
    de Gosson m.SG/05 [phase-space formulation];
    Fialowski IJTP(08) [in mathematics and physics];
    Lavagno JPA(08)-a0808 [and q-Hermitian operators],
    RPMP(09)-a0911 [basic theory];
    Curtright & Zachos APPN(12)-a1104 [history];
    Dey et al JPA(13)-a1302 [different types of representations];
    Velhinho EJTP-a1412 [strict quantization, intro];
    Waldmann a1502-proc [recent developments];
    Bishop et al PLB(20)-a1911 [modified operators vs modified commutators, and minimal length];
    Chan et al a2009 [quantization on Kähler manifolds];
    Moshayedi a2012-ln [and Poisson geometry].
  @ With constraints: Shabanov MPLA(95)qp/96;
    Bordemann et al CMP(00) [BRST cohomology];
    Grigoriev & Lyakhovich CMP(01)ht/00 [Fedosov quantization as BRST theory];
    Dias & Prata JMP(05)mp [deformation, phase space quantization];
    Berra-Montiel & Molgado CQG(20)-a1911 [group-averaging  approach];
    > s.a. second-class constraints.
  @ Polarized: Donin JGP(03) [classification].
  @ Books and intros: Fedosov 96;
    Carroll 00;
    Hirshfeld & Henselder AJP(02)may [and teaching];
    Dito & Sternheimer m.QA/02-proc [development];
     Waldmann ht/03-ln,
    RVMP(05)m.QA/04 [representation theory];
    Tillman JPA(07)gq/06-proc [and the Klein-Gordon equation];
    in Todorov BulgJP(12)-a1206 [and geometric quantization].
Special Topics and Consequences > s.a. coherent
  states; GNS construction; Orbifold;
  uncertainty relations; wigner functions.
  * Idea: A deformation of the
    Heisenberg algebra (commutators) leads to modified uncertainty relations,
    which could correspond to the existence of a minimal length.
  @ General references: Matos-Abiague JPA(01)qp [and fractional dimensions];
    González et al JOB(03)qp [on S1 × \(\mathbb R\)];
    Andersen m.DG/06
      [Hitchin's connection, Toeplitz operators];
    Bieliavsky et al CMP(09)-a0806 [space of invariant deformation quantizations on the hyperbolic plane];
    Much JMP(17)-a1608 [curving flat spacetime];
    Domański & Błaszak a1706 [with minimal length, complete theory].
  @ Techniques: Waldmann CMP(00) [locality and GNS construction];
    Periwal ht/00 [non-perturbative corrections];
    Butin Sigma(08)-a0804 [and Hochschild cohomology];
    de Gosson & Luef JPA(09)-a0901 [use of Feichtinger's modulation spaces];
    Tosiek et al JMP(16)-a1502 [WKB method];
    Tosiek a1609 [shortcomings of formal series calculus].
Based on Nambu Algebras / Brackets
  > s.a. poisson brackets [classical Nambu brackets].
  @ General references:
    Xiong PLB(00);
    Frønsdal LMP(01) [quantization, and QCD];
    Curtright & Zachos PRD(03) [and classical mechanics];
    Sato PRD(12) [Zariski quantization].
  @ Examples, systems:
    Curtright & Zachos NJP(02)mp [superintegrable systems];
    Nutku JPA(03)qp [harmonic oscillator];
    Zachos & Curtright CzJP(04)mp [H atom].
Based on Moyal Brackets
  > s.a. poisson brackets; formulations
  of quantum mechanics; Wigner-Weyl-Moyal Formalism.
  @ General references:
    Braunss JMP(94);
    Osborn & Molzahn AP(95);
    Gracia-Bondía & Várilly JMP(95) [geometric];
    Ovsienko JDG(97);
    Finkelstein LMP(99)ht [observable properties];
    Koikawa PTP(01)ht,
    PTP(02)ht/01 [oscillator, vacuum],
    PTP(01)ht [Im, and Toda lattice];
    Dias & Prata JMP(07) [Moyal trajectories and classical motion];
    Berra-Montiel et al IJGMP(16)-a1408 [Poisson structure and deformation quantization];
    > s.a. Liouville Theory.
  @ And coherent states: Daoud & El Kinani JPA(02)mp/03;
    Tan JPA(06)ht,
    Ghorashi et al IJMPA(12) [coherent-state-based path integral].
  @ Phase-space formulation: Hakioglu & Dragt JPA(01)qp;
    Zachos IJMPA(02)ht/01.
  @ With constraints: Antonsen gq/97,
    gq/97-proc;
    Chapline & Granik ht/98;
    Hori et al PTP(02)ht;
    Krivoruchenko ht/06-conf;
    > s.a. dirac quantization.
  @ For fermions: Galaviz et al AP(08)ht/06,
    AP(08)ht/07;
    Odendahl & Henselder PLA(08) [and path integral].
  @ Other types of systems: Castro PLB(97)ht [continuous Toda field, geometric],
    ht/97,
    JPA(10) [membrane];
    > s.a. minisuperspace quantum
      gravity; quantum oscillators.
Other Deformations
  > s.a. fock space; non-commutative
  theories; poisson brackets.
  * Normal star product:
    Can use the non-commutative star product f *g
    := exp{\(\hbar\)∂a∂a*}
  f(a) g(a*), where a and a*
    are holomorphic coordinates on phase space; Does not work for the simple harmonic
    oscillator because it gives En
    = \(\hbar\)ωn without the 1/2 (Moyal brackets are better
    in this sense), but may be desirable in quantum field theory.
  * Fedosov formalism:
    A generalization of the Moyal star product for an arbitrary symplectic
    manifold, based on a symplectic torsion-free affine (Fedosov) connection.
  @ Fedosov formalism:
    Fedosov JDG(94);
    Gadella et al JGP(05)ht/04 [in fiber bundle terms];
    Tillman & Sparking JMP(06) [particle on S2, observables];
    Tillman gq/06-wd [Fedosov star in some spacetimes];
    Tosiek APPB(07)mp/06 [abelian connection];
    Vacaru JMP(07)-a0707 [for Finsler and Lagrange spaces];
    Tosiek CPC(08)-a0801 [*-product with Mathematica];
    Vacaru a0801 [and lqg],
    Tosiek JMP(11)-a0907;
    Tosiek PLA(12) [1D, solution method for eigenvalue equation];
    Rudolph & Schmidt a2009
      [symplectification of the complete lift of a Levi-Civita connection];
    > s.a. symplectic manifolds.
  @ Fedosov formalism, generalizations: Bering Sigma(09)-a0804;
    Dobrski IJGMP(15)-a1411 [generalized Fedosov algebras];
    > s.a. manifolds [supermanifolds].
  @ Deformed Heisenberg algebra: Iorio & Vitiello MPLB(94)mp/00;
    Schmüdgen JMP(99) [operator representations];
    El Kinani IJTP(00) [R-deformed];
    Lubo ht/00 [thermodynamic implications];
    Ribeiro-Silva & Oliveira-Neto IJMPA(08) [in quantum field theory];
    Dorsch & Nogueira IJMPA(12)-a1106;
    Masłowski et al JPA(12)-a1201 [and minimal length];
    Gavrilik & Kachurik MPLA(12)-a1204 [3-parameter deformation];
    Faizal IJGMP-a1404 [maximal momentum];
    Pramanik et al AP(15)-a1411 [and path-integral quantization];
    > s.a. dirac equation;
      Quantum Algebra.
  @ Related topics: Pflaum ht/96 [normal-order quantization on cotangent bundles];
    Kontsevich LMP(03) [Poisson manifolds];
    Khrennikov IDAQP(07)qp/04 [hyperbolic analog of Moyal bracket];
    Gerstenhaber m.QA/05 [criterion];
    Sontz a0809-proc [deformed Segal-Bargmann space];
    Govaerts & Mattelaer a0812-proc [and phase-space path integral];
    Duval & Gotay RPMP(12)-a1108 [deformation of prequantization];
    Esposito a1207-ln [Poisson manifolds];
    Garay et al AP(14)-a1309 [based on endless analytic continuation];
    Vassilevich & Oliveira LMP(18)-a1802 [based on non-associative algebras].
Types of Systems > s.a. composite quantum systems;
  integrable quantum systems; quantum oscillators;
  quantum particles; sigma model.
  @ Phenomenology: Maziashvili & Megrelidze PTEP(13)-a1212 [issues and problems].
  @ General references:
    Hirshfeld & Henselder AP(02) [with fermions];
    García-Compeán et al JPA(02) [geometric quantum mechanics];
    Benczik et al PRA(05)ht [H atom with minimal length];
    Kupriyanov et al JPA(05)qp [linear dissipative];
    Frønsdal & Kontsevich LMP(07)mp/05 [on varieties with singularities];
    Gamboa et al PLB(08)-a0805 [3D models and physical meaning of deformation];
    Hawkins CMP(08)
      [S2, obstruction];
    Becher et al LMP(10)-a0908 [open systems];
    Waldmann proc(10)-a0909 [Rieffel's deformation quantization];
    Buisseret PRA(10)-a1011 [N-body systems];
    Berger & Maziashvili PRD(11)-a1010 [free particle, wave function].
  @ 1D infinite wall / well: Kryukov & Walton AP(05)qp/04,
    comment Dias & Prata AP(05)qp/05;
    Kryukov & Walton CJP(06)qp/05.
  @ Scalar quantum field theory:
    García-Compeán et al IJMPA(01) [and abelian gauge theory];
    Hirshfeld & Henselder AP(02);
    Grosse & Wohlgenannt NPB(06) [κ-deformation and UV-IR mixing];
    Maziashvili PRD(12)-a1104 [free massless field on de Sitter spacetime];
    Wu & Zhou a1807;
    Berra Montiel & Molgado a2005 [holomorphic representation].
  @ Other quantum field theory:
    Ferrara & Lledó JHEP(00) [supersymmetric theories];
    Hirshfeld & Henselder AP(02) [fermions]; 
    Finkelstein ht/03 [pairs of dual algebras];
    Harrivel mp/06 [covariant];
    Arzano AIP(09)-a0909 [pedagogical, κ-Fock space];
    Morales PhD(12)-a1202 [free Dirac field in curved spacetime];
    > s.a. 2D quantum gravity; modified approaches
      to quantum gravity; gravitation; klein-gordon quantum
      field theory; loop quantum cosmology; minisuperspace
      quantization [Kantowski-Sachs]; modified quantum field theories;
      non-commutative gauge theory; non-commutative
      gravity; Pais-Uhlenbeck Model.
  @ Strings: García-Compeán et al
      JPA(00) [bosonic].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021