|  Quantum Computers | 
In General
  > s.a. computation; grassmann manifolds;
  Lambda Calculus; logic; quantum
  chaos; quantum information; time;
  Turing Machine.
  * Idea: A computer which can be in
    a superposition of quantum states.
 
  * Motivation: It would allow faster
    computation in some cases, like factoring large numbers (used in cryptography),
    search and optimisation, simulation of quantum systems, and solution of large systems
    of linear equations.
  * Precursors: 1961, Landauer, dissipation
    and irreversible operations; 1973, Bennett, reversible dissipationless computation.
  * History: Early 1980s, Ideas pioneered
    by P Benioff, R Feynman, and others; 1989, Deutsch, universal three-qubit quantum
    logic gate; 1994, A concrete algorithm for factorization; 1999, Kitaev, definition
    and use of complexity class QMA, the quantum analog of the class NP.
  * Qubit: A quantum system that can be in
    (a superposition of) two states; > s.a. quantum
    systems.
  * And complexity: The quantum analog of
    the class NP is Kitaev's complexity class QMA.
  @ I: Lloyd SA(95)oct;
    Milburn 98;
    Grover ThSc(99)jul;
    Aaronson SA(08)mar;
    Monroe & Lukin pw(08)aug [rev];
    Monroe & Wineland SA(08)aug;
    Bacon pw(09)feb;
    news cosmos(18)jul,
    Phys(19)oct [towards quantum supremacy].
  @ II: Deutsch PW(92)jun;
    Haroche & Raimond PT(96)aug;
    Mermin 07;
    Stolze & Suter 08;
    Stenholm & Suominen 05;
    Harrow ACM(12)-a1501 [motivation];
    Benenti et al 18 [and III];
    Hughes et al a2004 [course for high school students];
    Kasirajan 21;
    Espitia & Park a2105 [in scientific computing and cybersecurity].
  @ Quantum speedup: Hemaspaandra et al qp/99;
    Castagnoli & Finkelstein PRS(01);
    Castagnoli a0906/Nat,
    a0910,
    Cuffaro PhD(13)-a1304 [reason];
    Howard et al Nat(14)jun-a1401 [contextuality as a critical resource];
    > s.a. quantum state evolution [speed].
  @ Other theory: Deutsch PRS(89);
    Unruh PRA(95)ht/94 [coherence];
    Jozsa in(97)qp;
    issue PRS(98)#1969;
    issue PTRS(98)#1743;
    Gudder IJTP(00);
    Anders et al FP(08) [as a form of phase transition];
    Castagnoli IJTP(08);
    Pérez-Delgado & Kok PRA(11)-a0906 [criteria],
    PRA(11);
    Horsman & Munro a0908-conf [hybrid quantum-classical computation];
    Chiribella et al PRA(13)-a0912 [without fixed causal structure];
    Venegas-Andraca MSCS(10)-a1103 [conceptual];
    Preskill a1203-conf [the entanglement frontier];
    Van Meter FP(14) [outlook];
    Loveridge et al PRS(15)-a1408 [topos logic as a quantum computational resource];
    Raussendorf QIC-a1602 [cohomological framework];
    Holik et al a1811 [quantum computational logics];
    Trindade et al a2003 [in terms of algebraic spinors];
    Svozil a2011-in
      [quantum computational states as vectors, classical ones as set elements].
  @ Books: Berman et al 98;
    Macchiavello et al ed-01;
    Le Bellac 06;
    Geroch 09;
    Rieffel & Polak 11 [r PT(12)feb];
    Steeb & Hardy 11 [problems and solutions];
    Perry 12 [readable];
    Wootton et al a2012 [interactive textbook].
  @ Intros, reviews: Barenco CP(96)qp;
    Brassard qp/96-proc;
    Di Vincenzo cm/96-in;
    Bennett et al qp/97-in;
    Preskill PRS(98)qp/97 [assessment];
    Steane RPP(98)qp/97;
    Aharonov ARCP-qp/98;
    Rieffel & Polak ACM-qp/98;
    Scarani AJP(98)nov-qp;
    Vedral & Plenio PQE(98)qp;
    Zalka qp/98;
    Lomonaco qp/00-ln;
    Knill & Nielsen qp/00-en;
    Ekert et al qp/00-ln,
    IJMPA(01);
    Greenland CP(01);
    Arrighi qp/03;
    Zalka qp/03-ln;
    Chatterjee qp/03;
    Eisert & Wolf qp/04-ch;
    Rosinger qp/04-ln;
    Gerjuoy AJP(05)qp/04;
    Bub qp/05-ch;
    Benenti & Strini QB(07)qp [short];
    Yanofsky a0708;
    Duplij & Shapoval a0712-conf;
    Ladd et al Nat(10)-a1009;
    Burell a1210 [using cavity QED concepts];
    Dyakonov a1212-conf [rev];
    Wiebe a1401 [and foundations of physics];
    Montanaro a1511 [short survey];
    Biswas et al a1704 [NASA perspective];
    Castagnoli a1710 [the seminal Deutsch algorithm];
    Calude & Calude a1712;
    Landsberg a1801 [for mathematicians];
    Dyakonov a1903-conf,
    Martonosi & Roetteler a1903 [status];
    de Wolf a1907-ln;
    Jazaeri a1908;
    Alexeev et al a1912 [needs, opportunities, and challenges];
    Catt & Hutter a2005;
    Bishnoi a2006 [book length];
    Cuffaro a2103-ch [philosopher's perspective].
  @ Intros for computer scientists: Mermin AJP(03)jan-qp/02;
    Nannicini a1708. 
Algorithms
  > s.a. complexity; computation.
  * Shor's algorithm: An algorithm,
    proposed in 1994, which can potentially factor large integers in a time proportional
    to L2 for an L-digit number, a
    fraction of the exp{L1/3} time needed
    for the best digital computers; 2001, It has factored the number 15.
  @ Information, cryptography, security: Lo PRA(97)qp/96;
    Ekert qp/97;
    Zbinden et al EL-qp/97 [experiment];
    Lo & Chau Sci(99)qp/98;
    Pawłowski & Czachor qp/04 [security and interpretations];
    > s.a. quantum information.
  @ Factoring: Shor in(94);
    Lomonaco qp/00;
    Mermin PT(07)apr;
    Dattani & Bryans a1411 [4-qubit factorization of 44929];
    Anschuetz et al a1808 [variational].
  @ Algorithms: Abrams & Lloyd; Jozsa PRS(98)qp/97-proc;
    Czachor APS(98)qp [non-linear];
    Hogg et al IJMPC(99)qp/98 [tools];
    Ohya & Volovich qp/99 [for NP problems];
    Shor qp/00-ln [intro];
    Hunziker et al qp/03 [quantum learning];
    Hodges qp/05 [re classically unsolvable problems];
    Rosinger qp/06 [comments];
    Furrow qp/06-conf;
    Richter NJP(07)qp/06 [random walk];
    Mosca a0808-en [survey];
    Harrow et al PRL(09)-a0811,
    Harrow a1501-en [systems of linear equations];
    Abbott nComm(12)-a0910-proc [Deustch-Jozsa problem];
    Mosca & Smith a1001-ch;
    Childs & van Dam RMP(10) [rev];
    Yung et al PRA(10)-a1005 [simulating a thermal state];
    Patel pn-a1102 [database search algorithm];
    Fowler et al PRA(12)-a1208 [surface codes, intro];
    Zeng a1512-PhD [abstract structure];
    Hangleiter a2012-PhD [quantum sampling algorithms];
    > s.a. 3-manifolds; computation;
      integration theory; knot invariants;
      ramsey theory; random processes [random numbers];
      Triangulations.
  @ Programming languages: Blaha qp/02;
    Mlnařík a0708;
    Green et al ACM(13)-a1304-proc,
    LNCS(13)-a1304 [Quipper].
Special Topics
  > s.a. implementations [including counterfactual computation, topological quantum
  computing, applications]; quantum measurements; spin models.
  @ And complexity: Svozil ht/94;
    Fortnow qp/00-talk;
    Aharonov & Naveh qp/02-ln [quantum NP].
  @ Limits: Pati et al qp/02;
    Gambini et al in(06)qp/05 [from quantum gravity].
  @ Other views and theoretical aspects: Castagnoli & Monti qp/98-conf [and particle statistics];
    Rudiak-Gould qp/06 [sum-over-histories view];
    Roser MS-a1012 [and pilot-wave theory];
    Ohzeki a1204-in [and statistical mechanics].
  @ Universal quantum computer:  Deutsch PRS(85);
    Yu Shi PLA(02)qp/99;
    Raussendorf PRA(05)qp/04 [quantum cellular automaton];
    > s.a. computation.
  @ Quantum simulations:
    Obenland & Despain qp/98-conf;
    Sanders LNCS(13)-a1307 [universal quantum simulators];
    Cohen et al a2003 [for lqg].
  @ Other topics: Jozsa qp/98-proc [quantum effects];
    Lloyd & Braunstein PRL(99)qp/98 [continuous variables];
    Viola et al JPA(01) [physical qubits];
    Fujii qp/01 [holonomic];
    Aerts & Czachor JPA(07) [quantum-like computing];
    Delfosse et al PRX(15)
      [with rebits, using contextuality and Wigner function negativity as computational resources];
    Adlam & Kent IJQI(15) [deterministic relativistic quantum bit commitment];
    Vourdas JPA(18)-a1810 [fermionic];
    > s.a. quantum information [including storage].
In Generalized Theories
  > s.a. interference [with higher-order interference];
  probability in physics [generalised probabilistic theories].
  @ Many-worlds view: Hewitt-Horsman qp/02,
    FP(09)-a0802;
    Duwell PhSc(07)dec;
    Cuffaro SHPMP(12) [against].
  @ And quantum gravity:  Hardy qp/06-proc [quantum gravity computer];
    Mielczarek a1803-GRF;
    Vaid a1912
      [quantum error correction in quantum gravity].
  @ With closed timelike curves:
    Deutsch PRD(91);
    Brun FPL(03)gq/02;
    Bacon PRA(04)qp/03;
    Aaronson & Watrous PRS(09)-a0808 [equivalent to classical];
    Stannett QIC-a1103-in.
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical." – R. Feynman.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 may 2021