|  Computational Physics | 
In General > s.a. programming languages [e.g., Maple, Mathematica];
  random and stochastic process.
  * History: The original
    idea of performing numerical experiments was Fermi's, and was first used
    in the Fermi-Pasta-Ulam model.
  * Status: 1994, Typically,
    use × 106 data elements, but ×
    108 are possible; The cost may be $1000/hr though.
    * Method: Reduce pdes to finite
    difference equations (can be done in different ways); Use combinatorial methods.
  * Remark: It is useful to practice
    with wave equations on a PC and to do related plots.
  @ Intros, books: Koonin 85 [BASIC];
    Hogg & Huberman PRP(87);
    DeVries 94 [FORTRAN],
    AJP(96)apr [RL];
    Fosdick et al 96;
    Weissert 97 [history];
    Wong 97 [methods];
    Vesely 01;
    Steeb et al 04 [C++ and Java];
    Giordano & Nakanishi 05;
    Yevick 05;
    Gibbs 06;
    Pang 06;
    Landau et al 07;
    Thijssen 07;
    Landau AJP(08)apr [RL]
    and issue AJP(08)apr;
    Hoover a0812-Ens [personal view];
    Hartmann 09 [practical guide];
    Gonnet & Scholl 09
      [r PT(10)aug];
    Klein & Godunov 10;
    Langtangen 12 [Python];
    Franklin 13;
    Barone et al 13 [in C];
    Anagnostopoulos 14 [FORTRAN];
    Hutchinson 15 [II, student guide];
    Shen 15 [Matlab];
    Stewart 17 [Python];
    Širca & Horvat 18 [methods].
  @ Undergraduate curriculum: Spencer AJP(05)feb [lab sequence];
    Chabay & Sherwood AJP(08)apr [in calculus-based physics];
    Serbanescu et al AJP(11)sep;
    Caballero & Pollock AJP(14)mar [intermediate-level classical mechanics].
  @ Physics and computation:
    Richtmyer & Metropolis PT(49)oct;
    Feynman IJTP(82);
    Toffoli IJTP(82);
    Geroch & Hartle FP(86)-a1806;
    Landauer FP(86);
    Langer PT(99)jul [comments];
    Rossi ht/06-conf [challenges and opportunities];
    Winsberg 10 [philosophical point of view];
    Barrett et al npjQI(19)-a1702 [general physical theories].
  @ Visualization: Dardashti et al a1604 [Bayesian analysis of scientific inference by simulation].
  @ Theoretical physics and PCs: Schmid et al 90;
    Stauffer & Stanley 95.
  @ Visualization: Earnshaw & Wiseman 92;
    PW(93)sep, p48;
    Hammond PW(96);
    Hege & Polthier 98;
    Sanders et al NJP(09) [focus];
    Farr JVWR-a0905 [self-gravitating systems, using virtual worlds];
    Goodman a0911-proc [status];
    Gazis et al PASP(10)-a1008 [large, high-dimensional data sets].
  @ Supercomputers: Kaufmann & Smarr 93 [I].
Special Techniques
  > s.a. Derivatives [and finite differences]; monte carlo
  method; Simulated Annealing [minimization / optimization procedure].
  * Mesh enhancement: The process
  in which an existing mesh is modified to better meet the requirements of the system.
  @ Texts: MacKeown 97 [stochastic];
    Mitzenmacher & Upfal 05 [probabilistic].
  @ General references:
    Knuth 69-73;
    Dahlquist & Bjoerck 74;
    MacKeown & Newman 87;
    Acton 90;
    Heermann 90;
    MacDonald 94 [REDUCE];
    García 00 [Matlab];
    Gould et al 06;
    Enns & McGuire 07 [recipes, in Maple];
    Press et al 07;
    Báez-López 09 [Matlab];
    Kharab & Guenther 11 [Matlab].
  @ Mesh adjustment:
    Pretorius & Lehner JCP(04) [adaptive];
    Choi et al JCP(04) [refinement boundaries];
    Anderson et al JCP(05) [unstructured simplices];
    Baker & van Meter PRD(05)gq [in general relativity, reflections from interfaces];
    Pretorius & Choptuik JCP(06)gq/05 [adaptive, coupled elliptic-hyperbolic systems];
    > s.a. specific areas [adaptive mesh].
  @ Related topics: Fulling qp/99,
    qp/99 [large integers and remainders];
    Hansen et al 05 [mesh enhancement];
    Acebrón & Spigler JCP(05) [quasi-random numbers for stochastic systems];
    Billo 07 [Excel];
    Mazars PRP(11) [correct handling of long-range interactions];
    Tripolt et al CPC(19)-a1801 [analytic continuation of Euclidean data];
    Tran et al PRL(20)-a1912 [destructive error interference].
  > Related topics:
    see Courant-Friedrichs-Lewy Condition;
    Finite-Element Method; Symplectic Integrators.
Related Topics > see computation [including tensor manipulation]; computational methods in specific areas.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 apr 2021