|  Dualities in Field Theories | 
In Electromagnetic Theory
  > s.a. electromagnetism / differential forms;
  integrable systems; theory of physical
  theories [equivalence].
  \(\def\se{_{\rm e}}\def\sm{_{\rm m}}\)
  * Hodge duality: The
    transformation \(F^{~}_{ab} \mapsto {}^*F^{~}_{ab}\), defined by \({}^*F^{~}_{ab}
    = {1\over2}\,\epsilon^{~}_{ab}{}^{cd}F^{~}_{cd}\), with \(\epsilon^{0123} = 1\).
  * Continuous duality transformations:
    The 1-parameter family of transformations of the electric and magnetic quantities
    \(\{(\rho\se,\rho\sm),(j\se,j\sm),(E_i,H_i),(D_i,B_i)\}\); For a generic pair
    \((x\se,x\sm)\) of quantities, the duality is defined by
  
    for the electromagnetic field, where ξ is a constant parameter
    (which cannot be promoted to a local one as in the gauge-theory trick).
  * Properties: The values of
    \({\bf E} \times {\bf H}\), \({\bf E}\cdot{\bf D} + {\bf B} \cdot {\bf H}\),
    \(T_{ab}\), and the Maxwell equations, are left invariant.
  * Applications:
    Duality between the Aharonov-Bohm and
    Aharonov-Casher effects.
  @ General references:
    Misner & Wheeler AP(57);
    Montonen & Olive PLB(77) [monopole];
    Zhu JPA(89) [complexions];
    Anandan gq/95 [topological phases];
    Deser & Sarioglu PLB(98)ht/97 [and Lorentz invariance];
    Igarashi et al NPB(98)ht;
    Hatsuda et al NPB(99)ht [invariant lagrangians];
    Li & Naón MPLA(01)ht/00;
    Przeszowski JPA(05)ht [light-front variables];
    Julia ht/05-conf [generalization];
    Barnich & Troessaert JMP(09)-a0812 [as bi-Hamiltonian system];
    Bunster & Henneaux PRD(11)-a1011,
    Deser CQG(11)-a1012,
    Saa CQG(11)-a1101 [no local, gauged version];
    Freidel & Pranzetti PRD(18)-a1806 [extension to the boundary];
    Bunster et al PRD(20)-a1905 [and BMS invariance].
  @ On a general manifold, and gravity: Witten SelMath(95)ht [on a general manifold];
    in Garat JMP(15)gq/04;
    Bakas a0910-proc [and gravity];
    Agulló et al PRD(14)-a1409,
    PRL(17)-a1607,
    PRD(18)-a1810 [anomaly, in curved spacetime].
  @ In quantum electrodynamics:
    Buhmann & Scheel PRL(09)-a0806 [macroscopic];
    Yang & Xu a2103 [no new conservation law].
  @ In non-linear electrodynamics:
    Gibbons & Rasheed NPB(95)ht;
    Gaillard & Zumino LNP(98)ht/97,
    ht/97 [non-linear].
  @ From Lagrangian: Bhattacharyya & Gangopadhyay MPLA(00)ht/98;
    Bliokh et al NJP(13)
      [helicity, spin, momentum and angular momentum].
  @ Related topics: Fayyazuddin a1608 [3D theory with massive photon];
    Castellani & De Haro a1803-in [fundamentality and emergence].
Gauge-Gravity Duality
  > s.a. AdS-cft correspondence; approaches to
  quantum gravity; Double Copy; holography.
  * Idea: A set of
    relationships (for example the AdS-cft correspondence) which convert
    difficult problems in certain types of gauge theories into (relatively)
    simple geometric problems in gravity in one higher dimension.
  @ General references:
    't Hooft NPB(74) [precursor];
    Polchinski a1010-ln;
    Shuvaev a1106;
    Maldacena a1106-ch;
    Billó et al a1304-proc [non-perturbative aspects];
    Ammon & Erdmenger 15;
    De Haro SHPMP(15)-a1501 [and emergent gravity];
    De Haro et al FP(16)-a1509 [rev];
    Engelhardt & Fischetti CQG(16)-a1604 [boundary causality];
    DeWolfe a1804-ln [intro];
    Semenoff a1808-ln [holographic duality of gauge fields and strings].
  @ And quantum gravity: Engelhardt & Horowitz IJMPD(16)-a1605-GRF;
    Hanada & Romatschke JHEP(19)-a1808 [simulations and phases].
  @ And condensed-matter physics: Sachdev ARCMP(12)-a1108;
    > s.a. 2012 talk
      by Gary Horowitz on using the duality to model high-T superconductors.
  @ Other applications:
    Wadia MPLA(10);
    Hossenfelder PRD(15)-a1412 [analog systems].
In Other Theories
  > s.a. hamiltonian systems; higher-order
  lagrangians; lagrangian dynamics; M-theory.
  * In quantum mechanics:
    What Isidro calls duality is in reality an ambiguity in the choice of
    complex structure used in quantizing a classical theory.
  @ General references: Savit RMP(80);
    Banerjee & Ghosh JPA(98)
    [chiral oscillator model]; Olive ht/02-proc;
    De Haro et al SHPMP-a1603 [and gauge symmetries];
    McInnes NPB(16)-a1606 [field theories with no holographic dual];
    De Haro & Butterfield a1707-in [schema, and bosonization example];
    De Haro Syn(19)-a1801 [theoretical and heuristic roles];
    Butterfield a1806-in [in physics vs philosophy];
    Thompson a1904-proc
      [generalised dualities and their applications];
    De Haro & Butterfield Syn-a1905 [and symmetries];
    Turner PoS(19)-a1905 [in 2+1 dimensions];
    De Haro a2004 [empirical equivalence].
  @ Quantum mechanics: Isidro MPLA(03)qp,
    PLA(03)qp,
    qp/03-in [projective phase space],
    MPLA(04)qp/03 [torus phase space];
    > s.a. coherent states.
  @ Non-abelian gauge theory:
    Mohammedi ht/95;
    Duff IJMPA(96) and
    IJMPD(96)
      [in supersymmetric gauge theory, from strings];
    Martín MPLA(99) [in path space];
    Chan & Tsou IJMPA(99)ht;
    Tsou ht/00-ln,
    ht/00-conf;
    Faddeev & Niemi PLB(02)ht/01 [SU(2) Yang-Mills theory];
    Majumdar & Sharatchandra IJMPA(02);
    Deser & Seminara PLB(05)ht [duality invariance for free bosonic and fermionic gauge fields];
    Kihara JMP(11) [generalized self-duality equations];
    Ho & Ma NPB(16)-a1507.
  @ Sigma-models:
    Mohammedi et al ZPC(97)ht/95;
    Mohammedi PLB(96)ht/95,
    PLB(96).
  @ Linearized gravity: Henneaux & Teitelboim PRD(05)gq;
    Barnich & Troessaert JMP(09)-a0812 [as bi-Hamiltonian system];
    Bakas a0910-proc;
    Troessaert a1312-PhD.
  @ General relativity: Hawking & Ross PRD(95)ht [electric and magnetic black holes];
    Maartens & Bassett CQG(98)gq/97;
    Nouri-Zonoz et al CQG(99)gq/98 [NUT];
    Dadhich MPLA(99)gq/98,
    MPLA(99),
    GRG(00)gq/99;
    Abramo et al MPLA(03) [with scalar field];
    Deser & Seminara PRD(05)ht [failure in non-linear case];
    Julia ht/05-conf;
    da Rocha & Rodrigues JPA(10)-a0910 [in gravitational theories];
    Dehouck NPPS(11)-a1101 [and supergravity].
  @ Scale factor duality in cosmology: Clancy et al CQG(98)gq;
    Di Pietro gq/01/MPLA [quintessence];
    Harlow & Susskind a1012 [general criteria].
  @ In string theory:
    Rickles SHPMP(11);
    Polchinski SHPMP(17)-a1412;
    Huggett & Wüthrich a2005-ch [meaning and significance];
    > s.a. strings.
  @ Related topics: Gaona & García IJMPA(07) [first-order actions];
    Lindström et al JHEP(08)-a0707 [T-duality for generalized Kähler geometries];
    Barnich & Troessaert JHEP(09)-a0812 [for spin-2 fields in Minkowski space];
    Nussinov et al NPB(15)-a1311 [dualities as conformal transformations, and practical consequences];
    Miyaji & Takayanagi PTEP(15)-a1503 [codimension-two spacelike surfaces and states in dual Hilbert spaces];
    Sourlas a1907 [fermionic theories].
  > Related topics:
    see gravitomagnetism; self-dual fields
    [connections] and self-dual solutions in general relativity [Weyl tensor].
  > Other dualities:
    see Galerkin Duality.
Dual Mass in Gravitation
  @ General references:
    Lubkin IJTP(77);
    Magnon JMP(87),
  NCA(88); Torre CQG(95)gq/94.
  @ Phenomenology: Cates et al GRG(88);
    Rahvar & Habibi ApJ(04)ap/03 [microlensing signatures];
    Danehkar HEPGC(17)-a0707.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 mar 2021