|  Causality in Quantum Theory | 
In General
  > s.a. causality [as emergent]; quantum
  effects, locality and measurement;
  indefinite causality and causality violations.
  * Idea: In the operator version it is
    built in via the unitarity of time evolution; Quantum non-locality is causal because
    it cannot be used to transfer classical information across spacelike intervals, and
    measurements of entangled systems cannot be used for superluminal signaling (not
    true in non-linear quantum mechanics); But see barrier transmission.
  * Rem: Causal reversibility is related
    to the fact that  observables form a real C*-algebra; Locality and separability then
    impose restrictions; Causally non-separable processes cannot be embedded in a
    well-defined global causal structure.
  @ General references: Kraus FPL(89) [no action at a distance];
    Stapp AJP(97)apr;
    Westmoreland & Schumacher qp/98;
    Mashkevich qp/98,
    qp/98;
    Cereceda FPL(00)qp [constraints and EPR];
    Segev PRA(01) [phase-space formulation];
    Simon et al PRL(01)qp [axioms];
    Grove FP(02) [changing the past];
    Belavkin RPP(02)qp [trajectories and information];
    Palmer qp/05 [causal incompleteness and non-locality];
    Pegg PLA(06) [arrow of time];
    Evans et al BJPS(12)-a1001 [and spacelike action at a distance];
    Hofmann a1005-proc [weak measurements, statistics and causality];
    Zaopo a1110 [relativity of causal structure];
    Gillis FP(11) [measurement and elementary interactions];
    Oreshkov & Giarmatzi NJP(16)-a1506 [causality and causal separability, multipartite causal processes];
    Diel a1604 [possibility of local causal models];
    Eckstein & Miller PRA(17)-a1610 [evolution of wave packets];
    Weilenmann & Colbeck Quant(20)-a1812 [in generalized probabilistic theories];
    Eckstein et al PRA(20)-a1902.
  @ Role of causality in quantum theory:
    Popescu & Rohrlich qp/97-proc [as axiom];
    Wharton qp/03/PRA;
    Delphenich qp/04-conf;
    David PRL(11)-a1103 [role of causality and locality];
    Kakushadze UJP-a1505 [rules based on causality];
    Winter a1705;
    D'Ariano PTRS(18)-a1804 [conceptual];
    Hofmann FP(20)-a2001 [causality as more fundamental than objective reality];
    > s.a. quantum correlations.
  @ And no-signaling constraints: 
    Horodecki & Ramanathan nComm-a1611;
    Frembs & Döring a1910 [and contextuality].
  @ Tests, causal inference: Ried et al nPhys(15)-a1406 [for quantum variables];
    Chaves et al nPhys(18)-a1808 [violation of an instrumental test];
    Fraser JCI(20)-a1902 [possible worlds framework];
    Chiribella & Swati a2004 [quantum speedups].
  @ Quantitative measures of causality: Jia a1801 [for general probabilistic theories];
    Girolami PLA(20)-a1909,
    Escolà & Braun a2105 [quantifying causal influence].
  @ Specific types of systems:
    Srikanth PLA(01) [entangled systems];
    Kent PRD(99)gq/97 [time-neutral cosmologies];
    Cotler et al JHEP(19)-a1811 [many-body systems, emergence of causal structure];
    > s.a. causality in quantum field theory.
  @  Related topics:
    Teufel et al PRA(97) [hidden variables];
    Kent PRA(05)qp/02,
    Pienaar PhD-a1401 [and non-linear quantum mechanics];
    Fitzsimons et al a1302
      [pseudo-density matrix for spatial and temporal measurements];
    Han & Choi a1307 [and probabilities];
    Cavalcanti JPCS(16)-a1602 [proposals for a quantum theory of causation];
    Allen et al PRX(17)-a1609
    + Pienaar Phy(17)
      [quantum common causes, quantum version of Reichenbach's principle];
    Thompson et al PRX(18)-a1712 [causal asymmetry in predictive modelling];
    Kent PRS(18)-a1807 [causal quantum theory, implications];
    Wechs et al NJP(19)-a1807 [causal non-separability];
    Wakakuwa et al PRL(19)-a1810 [complexity of causal order structures].
  > Related topics: see bell's
    theorem; Causal Models; contextuality;
    experiments in quantum theory [delayed-choice]; Lieb-Robinson
    Bounds; quantum collapse [and signaling];
    Retrocausation.
Types of Causality
  > s.a. locality; path integrals.
  * Abstract causal structures:
    A causal structure is a relationship between observed variables that restricts
    the set of possible correlations between them; Their study has become important
    for the development of quantum technologies, in particular quantum computing.
  * Relativistic: Versions include
    Stochastic Einstein Locality, Reichenbach's Principle of Common Cause, and
    Bell's Local Causality.
  * Information causality: A
    principle that places restrictions on physical processes, used in proposals
    for deriving quantum theory from information-theoretic considerations.
  @ Abstract causal structures:
    Weilenmann & Colbeck Quant(18)-a1605,
    PRS(17)-a1709 [entropy-based approach];
    Kissinger et al a1708 [and process terminality];
    Milburn & Shrapnel Ent(18)-a1809 [causal interventions, physical basis].
  @ Classical vs quantum causal structures:
    Vilasini & Colbeck PRR(20)-a1912 [entropic inequalities];
    Vilasini a2102-PhD.
  @ Information-theoretic constraints on correlations: Chaves et al nComm(15)-a1407;
    Weilenmann a1807-PhD.
  @ Bell's local causality: Norsen AJP(11)-a0707;
    Seevink & Uffink in(11)-a1007 [sharp and clean mathematical formulation];
    Ringbauer et al a1602 [test].
  @ Information causality: Pawłowski et al Nat(09)oct-a0905;
    Barnum et al NJP(10)-a0909 [in general probabilistic theories];
    Ahanj et al PRA(10) [and Hardy's non-locality];
    Cavalcanti et al nComm(10)-a1008 [and local quantum correlations];
    Gazi et al JPA(10) [and Hardy's correlations];
    Al-Safi & Short PRA(11) [entropic and probabilistic perspective];
    Beigi & Gohari a1111;
    Pawłowski & Scarani a1112 [rev];
    Hsu PRA(12) [multipartite];
    Yu & Lin a1301 [testing];
    Pitalúa-García PRL(13);
    Zoka & Ahanj QS:MF(16)-a1510 [and quantum correlations];
    Harremoës a2002 [from thermodynamic sufficiency];
    > s.a. quantum correlations.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 18 may 2021