|  Generalized and Modified Quantum Mechanics | 
In General
  > s.a. canonical quantization; geometric quantization;
  hilbert space; modified formalisms;
  quantum collapse; sub-quantum theories.
  *  Motivation: Comes from
    many different directions, such as the desire to explain the collapse of
    the wave function interpreted as a physical phenomenon (non-linear quantum
    mechanics), incorporating irreversibility or Lorentz invariance (relativistic
    quantum mechanics) or diffeomorphism invariance, accounting for phenomena
    (such as interference in time...), etc; More recent motivations include
    quantum information and some approaches to quantum gravity;
    > s.a. quantum mechanics.
  *  Non-equilibrium quantum theory:
    A proposal, inspired by pilot-wave theory and developed mainly by Valentini,
    in which the probability density is not necessarily
    |ψ|2 and the Born rule arises only
    in equilibrium; > s.a. pilot-wave theory.
  *  Causal quantum mechanics: Ordinary
    quantum theory modified by two hypotheses, state vector reduction is a well-defined
    process, and strict local causality applies; The first holds in some versions of
    Copenhagen quantum mechanics and need not necessarily imply testable deviations
    from ordinary quantum mechanics; The second implies that measurement events which
    are spacelike separated have no non-local correlations.
  @ General references: Hnilo a1212-conf [transient deviation from  quantum mechanics].
  @ Causal quantum mechanics: Kent PRA(05) [collapse locality loophole];
    Kent PRS(18)-a1807 [implications].
  @ And gravity: Hu JPCS(14)-a1402 [gravitational decoherence and  semiclassical gravity];
    Penrose FP(14) [conformal cyclic cosmology].
  @ Stochastic extension: & Hughston;
    Adler & Horwitz JMP(00);
    Adler & Bassi JPA(07)-a0708 [non-white noise and collapse];
    > s.a. Open System; Trajectory.
  @ Relational formulation: Rovelli ht/94,
    IJTP(96)qp;
    Francis gq/05;
    Marlow qp/06;
    Giddings PRD(08);
    Brown BJPS(09) [determinacy problem];
    van Fraassen FP(10);
    Dorato a1309 [philosophical implications];
    > s.a. Relationalism.
  @ Other probabilistic models, correlations: Barnum et al EPTCS(15)-a1507
      [non-signaling composites of probabilistic models based on euclidean Jordan algebras];
    Krumm et al NJP(17)-a1608 [generalized probabilistic theories and thermodynamics]. 
  @ Discrete quantum mechanics:
    Gudder & Naroditsky IJTP(81);
    Jagannathan et al IJTP(81);
    Buniy et al PLB(05)ht;
    Sasaki PTRS(10)-a1004;
    Odake & Sasaki JPA(11)-a1104;
    't Hooft a1204;
    Louko et al PRD(14)-a1309 [singularity resolution];
    Ellerman a1310 [QM/sets];
    Luoma & Piilo JPB(16)-a1509 [and non-Markovianity];
    Arik & Ildes PTEP(16)-a1510 [space with a finite number of points];
    Banks a2001;
    Majid a2002;
    > s.a. formulations of quantum mechanics.
  > No-go results:
    see Colbeck-Renner Theorem.
  > Some types of modifications motivated:
    see non-linear quantum mechanics; relativistic
    quantum mechanics; Super-Quantum Theory. 
  > Quantum-gravity motivated: see deformation
    quantization [modified commutation relations]; interference [higher-order
    interference]; matter phenomenology in quantum gravity;
    modified uncertainty relations [with minimal length];
    non-commutative physics.
Non-Hermitian, PT-Symmetric Quantum Mechanics
  > s.a. approaches to quantum field theory;
  relativistic quantum mechanics.
  *  Idea: A generalization in which
    the Hamiltonian is not invariant under Hermitian conjugation, but under PT, the
    combination of parity reflection and time reversal; It gives new classes of complex
    Hamiltonians whose spectra are still real and positive; 2014, The theory violates
    the non-signaling principle of relativity.
  @ General references:
    Bender et al JMP(99),
    PRL(02),
    AJP(03)nov-ht
    + comment van Hameren, CP(05)qp;
    Mostafazadeh qp/04;
    Kleefeld ht/04;
    issue JPA(06)#32;
    Bender RPP(07)ht [rev];
    Bender & Mannheim PRD(08)-a0804,
    a0902;
    issue JPA(08)#24;
    Das & Greenwood PLB(09)-a0905 [positive inner product];
    Kleefeld a0906 [inner product and C operator];
    Mannheim PTRS-a0912;
    Graefe et al JPA(10)-a0910 [classical limit and modified canonical structure];
    issue IJTP(11)#4;
    Brody JPA(16)-a1508 [consistency];
    Mannheim PRD(18)-a1708 [inner product];
    Bagarello & Feinberg a2001 [bicoherent-state path integrals];
    Ashida et al a2006-AiP [rev].
  @ Relationship with standard, Hermitian quantum theory:
    Bender et al JPA(06)ht/05,
    comment Mostafazadeh ht/06;
    Martin qp/07
      [it is just quantum mechanics in a non-orthogonal basis];
    Nagao & Nielsen PTP(11)-a1009 [effective Hermiticity emerges automatically];
    Lee a1312;
    Girardelli BJP-a1502 [nothing new]. 
  @ And quantum field theory: Bender et al PRL(14)-a1408 [inequivalent theories from one Lagrangian];
    Alexandre et al PRD(18)-a1805 [spontaneous symmetry breaking];
    Bender et al a2103 [and renormalization];
    Mannheim a2104-proc [and the ghost problem].
  @ Specific systems: Znojil JMP(09) [square well];
    Dasarathy et al PRA(13)-a1708 [box];
    > s.a. quantum oscillators;
      systems with special potentials.
  @ Related topics:  Bagchi & Fring PLA(09) [and deformed commutation relations, minimal length];
    Jones-Smith & Mathur PRD(14)-a0908 [relativistic];
    Schomerus PRA(11) [spontaneous PT-symmetry breaking];
    Bender & Klevansky PRA(11)-a1104 [fermionic algebras];
    Znojil CJP(12)-a1205 [exactly solvable model on a quantum graph];
    Bender & Weir JPA(12)-a1206 [unbroken-broken PT-symmetry phase transition];
    Bender et al AJP(13)mar
      [phase transition in a simple mechanical system];
    Lee & Mead a1303-wd [critical view];
    Lee et al PRL(14)-a1312,
    comment Znojil a1404 [non-signaling principle violation];
    Mead & Garfinkle a1610 [selection rule for transitions];
    Zhang a2005 [reformulation];
    > s.a. optics; quantum effects;
    quantum phase transitions; statistical mechanical systems.
Supersymmetric Quantum Mechanics
  * Idea: Used as a powerful
    tool for generating new potentials with known spectra starting from a known
    solvable one; The Hilbert space \(\cal H\) decomposes into a direct sum of an
    even and an odd part, \(\cal H\) = \(\cal H\)1
    ⊕ \(\cal H\)2, and the Hamiltonian is
    of the form H = Q2, with
    Q = matrix{0, q; q* q}; > s.a.
    supersymmetry in field theory.
  @ General references: Gendenshtein & Krive SPU(85);
    Boya et al PRD(87);
    Rota & Stein PNAS(90);
    Cooper et al PRP(95);
    Junker ht/96 [path-integral aspects];
    Debergh JPA(97) [in curved space];
    Fröhlich et al CMP(98) [and differential geometry];
    Capdequi-Peyranere MPLA(99)qp/00 [duality];
    Aoyama et al NPB(01)qp [n-fold];
    Cooper et al 01;
    issue JPA(04)#43;
    Spector JPA(04)qp/03 [partial supersymmetry];
    Parthasarathi et al JPA(04) [complex phase-space formulation];
    Khare AIP(04)mp [intro];
    Lundholm JMP(08)-a0710 [geometry];
    Kuznetsova RPMP(08) [irreducible representations];
    Bagarello PLA(08)-a0904 [extended, and coherent states];
    Fernández AIP(10)-a0909;
    Gangopadhyaya et at 11 [r CP(12)];
    Fernández a1811-in [rev];
    Ayad a1911-PhD;
    > s.a. relativistic quantum mechanics.
  @ Different approaches:
    Acosta-Humanez PhD(09)-a0906 [Galois theory approach];
    Castellani et al AHP(18)-a1706 [integral form formalism];
    Troost a2004.
  @ Models, applications:
    Goldstein et al AJP(94)jul [examples];
    Fernández IJMPA(97)qp/96 [exactly solvable];
    Rau JPA(04)qp [extension, examples];
    Hong et al PRD(05)ht [particle on a sphere];
    Bittner & Kouri a1005-conf [applications];
    Smilga JHEP(13)-a1301 [obtaining SQM model];
    > s.a. classical systems; coherent states;
      examples of entangled states; Painlevé Equations;
      quantum oscillator.
  @ Related topics: Daoud & Kibler mp/01-ln,
    mp/01-conf,
    PLA(04) [fractional supersymmetry];
    Kibler & Daoud qp/04-in [N = 2 fractional of order k];
    Kuznetsova et al JHEP(06)ht/05 [N-extended, irreducible representations];
    Rawat & Negi IJTP(09)ht/07 [quaternionic formulation];
    Andrianov et al NPB(07),
    Sokolov NPB(07) [non-linear supersymmetry];
    Dzhunushaliev JMP(08)-a0712 [octonionic extension and hidden variables];
    Baumgartner & Wenger NPB(15)-a1412,
    NPB(15)-a1503 [on the lattice];
    Coffey a1501
      [generalized raising and lowering operators].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 9 apr 2021