|  Hamilton-Jacobi Theory | 
In General
  > s.a. quantization of constrained systems
  [HJ approach]; covariant symplectic structure.
  * Idea: A method for solving dynamical equations
    in classical mechanics, or obtain frequencies of periodic motion without solving them.
  * Hamilton-Jacobi equation:
    The equation for S = S(q, P; t)
    solved by the action along a classical trajectory,
H(q, ∂S/∂q; t) + ∂S/∂t = 0 .
  @ General references:
    Small & Lam AJP(11)jun [simple derivation];
    Román-Roy Math(21)-a2101 [rev].
  @ Geometric approaches: 
    Marmo, Morandi & Mukunda RNC(90);
    Butterfield in(04)qp/02;
    Cariñena et al IJGMP(06)mp
      [on the tangent bundle, possibly bi-Hamiltonian and singular Lagrangians],
    in(09)-a0907 [and the time-evolution operator];
    Graffi & Zanelli RVMP(11);
    Barbero-Liñán et al a1209 [using general Lagrangian submanifolds].
  @ And quantum mechanics:
    Kyprianidis PLA(88);
    Ferraro qp/96,
    JPA(99)qp/96;
    Bhalla et al AJP(97)dec [and bound state spectrum];
    Periwal PRL(98);
    Kim & Lee CJP(99)qp [canonical transformations];
    Makowski PRA(02) [V(r) with no quantum correction];
    Jurisch qp/06,
    JPA(07);
    Roncadelli & Schulman PRL(07)-a0712 [prescription for solving the quantum HJ equation];
    Marmo et al a0907;
    Guo & Schmidt PRD(12)-a1204
      [quantization employing special solutions of the Hamilton-Jacobi equation];
    de Souza Dutra et al PTEP(16)-a1510 [and example];
    > s.a. origin of quantum mechanics.
Specific Types of Theories > s.a. classical
  relativistic particles; spinning particles.
  @ Constrained systems: Dominici et al JMP(84);
    Rothe & Scholtz AP(03) [second-class];
    Nawafleh et al IJMPA(04);
    Leok et al JMP(12)-a1109 [holonomic and non-holonomic].
  @ Non-holonomic: Pavon JMP(05)mp/04 [linear in velocity];
    Iglesias et al PRD(07)-a0705;
    Cariñena et al a0908 [geometric approach].
  @ For general relativity: Bergmann et al IJTP(70);
    Salopek & Stewart CQG(92);
    Parry et al PRD(94)gq/93;
    Salopek PRD(95)ap, ap/95-proc,
    ap/95-proc [cosmic time and matter],
    PRD(97)ap/98;
    Darian CQG(98) [+ electromagnetism + scalar];
    Parentani CQG(00)gq/98 [background-field approximation of quantum gravity];
    Bertin et al CQG(11)-a1107 [linearized gravity];
    > s.a. time in gravity.
  @ Field theories:
    Stoyanovsky in(04)mp/02;
    Bruno JMP(07) [solutions];
    de León et al a0801 [geometrical];
    Vitagliano IJGMP(10),
    IJGMP(12)-a1109-conf [higher-order field theories].
  @ Other theories and topics: Martínez-Merino & Montesinos AP(06)gq [covariant symplectic structure];
    Bertin et al AP(08)ht/07 [first-order actions for theories with higher derivatives];
    Rajeev AP(08)-a0711 [thermodynamics];
    de León et al JMP(13) [singular Lagrangian systems].
  > For quantum gravity:
    see 2D quantum gravity; time in quantum gravity.
  > Other quantum systems:
    see Bloch Theory; quantum systems;
    first-class and second-class
    constraints [Hamilton-Jacobi approach].
Techniques and Related Topics
  @ Separation of variables: Benenti JMP(97),
    et al JMP(02),
    JMP(02),
    JMP(05);
    Rastelli a0907-conf [geometrical theory].
  @ Other solution methods: Cheng & Shu JCP(07) [discontinuous Galerkin finite element method].
  @ Other related topics:
    Boyer & Kalnins JMP(77) [symmetries];
    Ramírez & Ritto RMF(03)mp [fermions];
    Barbero-Liñán et al a1110 [kinematic reduction, and non-holonomic systems];
    Cortés & Jiménez-Aquino PhyA(14) [equivalence with the Fokker-Planck equation, overdamped Brownian harmonic oscillator];
    Lemos AJP(14)sep
      [incompleteness, motion of a charged particle in an electric dipole field];
    > s.a. Diffieties.
  @ Generalizations: Chavoya-Aceves qp/04;
    Rabei et al PS(08) [with fractional derivatives];
    Marciniak & Blazsak JGP(08) [non-Hamiltonian systems];
    Balseiro et al Nonlin(10)-a1001 [unified framework];
    de León et al a1209 [in the setting of almost Poisson manifolds, including
      non-holonomic mechanical systems and time-dependent systems with external forces];
    Esen et al JPA(20)-a1901 [for higher-order implicit systems].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 jan 2021