|  Representations in Quantum Theory | 
In General > s.a. wigner functions [phase-space representations].
  * Idea: The basic problem in the
    quantum theory of a physical system is choosing a complete set of observables
    that characterize the states one wants to describe, and find a representation
    of this set on a Hilbert space.
  * Issues: How unique is the
    representation? Which functions on the basic operators can/should one represent?
  * Relevant tools / results:
    The Stone-von Neumann theorem, Van Hove theorem, GNS construction.
  @ General references:
    Shewell AJP(59)jan [operator ambiguities];
    de la Torre AJP(02)mar-qp/02
      [including aX + (1−a)P, \(1\over2\)(XP + PX)];
    Halvorson SHPMP(04)qp/01 [and complementarity];
    Vourdas JPA(06) [analytic, rev];
    Bracci & Picasso AJP(07)mar [inequivalent, Aharonov-Bohm effect example];
    Blood a1310 [what kets represent];
    Stepanian & Kohandel a1312 [unitarily inequivalent representations].
  @ Related topics: Fuss & Filinkov a1406 [periodic quantum systems, Colombeau algebra of generalized functions];
    > s.a. Superseparability; Weyl Algebra.
 Main types: see configuration-space based
  representations [Schrödinger, Heisenberg, interaction pictures].
 Main types: see configuration-space based
  representations [Schrödinger, Heisenberg, interaction pictures].
Bargmann-Segal (Coherent State) Representation > s.a. coherent
  states [including Segal-Bargmann transform]; deformation quantization.
  * Idea: The holomorphic
    representation on L2(\(\mathbb C\),
    exp{− |z|2} dz
    dz*) (ψ(z) is analytic), obtained from the
    usual L2(\(\mathbb R\),dx) using
    the heat kernel ρt
    by the transformation
ψ(x) \(\mapsto\) (Ct ψ)(z):= ∫ dx ρt(z − x) ψ(x) .
* Inner product, operators: If ψ(z):= ∑n=0∞ (n!)−1/2 zn \(\langle\)n|ψ\(\rangle\), with |a\(\rangle\) an eigenvector of a, then
    \(\langle\)ψ|φ\(\rangle\):= π−1
    ∫ ψ*(z) φ(z)
    exp{−z*z} d2z ;
    a† ψ(z)
    = z ψ(z)   and   a
    ψ(z) = (∂/∂z) ψ(z) .
  * Generalizations:
    The transform can be generalized to functions on groups.
  * For the simple harmonic
    oscillator: Define the complex variable as z:=
    (ωm/2\(\hbar\))1/2 q
    + i (2\(\hbar\)ωm)−1/2 p.
  @ General references: Bargmann CPAM(61),
    PNAS(62);
    Hall CM-qp/99,
    CMP(02) [compact groups, geometric quantization];
    Villegas-Blas JMP(02) [kernel of transform];
    Hübschmann JGP(08)m.DG/06 [and holomorphic Peter-Weyl theorem];
    Vourdas et al JPA(12)-a1111 [generalized];
    Oeckl JMP(12)-a1109 [isomorphism with the Schrödinger representation, field theory];
    Bergeron et al PLA(13) [equivalence to Weyl quantization].
  @ Related representations:
    Ribeiro et al PRL(05),
    Ribeiro et al JPA(09)-a0809 [conjugate representation];
    Parisio PTP(10)-a1003 [off-center coherent-state representation];
    Viscondi et al a1510
      [generalized coherent-state representation, semiclassical propagator].
  @ Other systems: Kowalski & Rembieliński JMP(01)qp/00 [particle on S2];
    Aldaya & Guerrero JPA(93) [relativistic oscillator];
    Ashtekar et al JFA(96)gq/94 [spaces of connections];
    Villegas-Blas JMP(06)
      [for L2(Sn)];
    > s.a. quantum oscillators; wigner functions.
Other Types of Representations
  > s.a. fock space; momentum representation;
  non-commutative physics; Polymer Representation.
  * Tomography: A formulation of
    quantum mechanics without probability amplitudes, expressed entirely in terms
    of observable probabilities; In it quantum states are represented not by complex
    state vectors or density matrices, but by real "probability tables" or
    marginal distribution functions, whose time dependence is governed by a classical
    evolution equation.
  @ Probability representation, tomography:
    Wootters FP(86);
    Man'ko et al PRA(98)qp [Green's functions],
    JPA(03) [identical particles],
    PLB(98)ht [in quantum field theory],
    PLA(06),
    qp/06-conf [in abstract Hilbert spaces],
    RPMP(08)qp/06;
    Weigert PRL(00)qp/99,
    qp/99
      ["expectation-value representation" for spins, similar?];
    Howard & March PLA(06) [and momentum density];
    Caponigro et al FdP(06)qp;
    Man'ko et al qp/06 [bibliography];
    Kiukas et al PRA(09)-a0902;
    Ibort et al PS(09)-a0904 [intro];
    Andreev et al JRLR-a0910 [for fermion fields];
    Fuchs PiC-a1003,
    a1003 [quantum Bayesian viewpoint];
    Ibort et al PLA(10)-a1004;
    Man'ko & Man'ko AIP(11)-a1102 [dynamical symmetries and entropic uncertainty relations];
    Korennoy & Man'ko a1104 [propagator];
    Man'ko & Ventriglia IJGMP(12)-a1111-conf [free particle motion, classical and quantum];
    Ibort et al PS(11)-a1204 [C*-algebraic approach];
    Man'ko & Man'ko AIP(12)-a1208 [tomographic entropic uncertainty relations];
    Fedorov PLA(13) [Feynman integral and perturbation theory];
    Aniello JPCS(13)-a1310 [evolution and semigroups];
    Man'ko & Man'ko EPJWC(14)-a1403 [and Wigner functions];
    Korennoy & Manko a1511 [gauge transformation of states];
    López-Yela a1512-PhD;
    Korennoy & Man'ko IJTP(17)-a1610 [symplectic and optical joint probability distributions];
    Man'ko et al a1905;
    > s.a. entropy; quantum states [reconstruction];
      in quantum field theory and in quantum gravity;
      wigner functions.
  @ Weil representation:
    Gurevich & Hadani a0808 [in characteristic two].
  @ Weyl representation:
    Parthasarathy a1803 [and Lévy processes].
  @ Related topics: Floyd qp/03-proc
      [trajectory representation, high-energy limit];
    Torres-Vega PRA(07) [energy-time];
    Chmielowiec & Kijowski JGP(12)-a1002 [generalized, fractional Fourier transform];
    Aerts & Sassoli de Bianchi JMP(16)-a1504 [extended Bloch representation, interference and entanglement];
    Chabaud et al PRL(20)-a1907 [stellar representation];
    > s.a. formalism [operator ordering]; Stone-von Neumann
      Theorem; tests of quantum mechanics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 apr 2021