|  Schrödinger Equation | 
In General
  > s.a. differential equations / hamilton-jacobi
  theory; quantum mechanics and quantum states;
  scattering.
  $ Def: The equation
    describing a (scalar) particle in non-relativistic quantum mechanics,
i\(\hbar\) ∂tψ = Hψ , H = −(\(\hbar\)2/2m) ∇2 + V(x) .
  * Conditions:
    For H to be self-adjoint on \(\cal D\)(H) ⊃
    C0∞(\(\mathbb R^n\))
    and positive, we impose restrictions on V.
  * Non-linear generalizations: They
    have been looked for partially with the motivation of explaining the "collapse
    of the wave function" when carrying out observations, and the probabilistic outcome
    of the latter; One adds a non-linear term for the interaction with the environment;
    > s.a. non-linear quantum mechanics.
  * Curved configuration space:
    A proposed generalization, which arises from operator ordering arguments and
    makes H self-adjoint, is
i\(\hbar\) ∂tψ = −(\(\hbar\)2/2m) gij ∇i∇j ψ + V(x)ψ −\(\hbar\)2 χR ψ , χ = constant .
  @ References: Schrödinger PR(26);
    Gray et al AJP(99)nov [original argument];
    Granik qp/04 [from Hamilton-Jacobi theory];
    Ward & Volkmer phy/06 [simple argument];
    Boonserm & Visser JMP(10)-a0910 [formulation as Shabat-Zakharov system and formal solution];
    Escauriaza et al BAMS(12) [uniqueness properties of solutions];
    Schleich et al PNAS(13)
    + news PhysOrg(13)apr [origin of the equation].
  >  Online resources:
    see MathWorld page.
Solutions and Approximation Methods
  > s.a. green functions; Perturbation Methods;
  solitons; WKB Approximation.
  @ Separation of variables: Zhdanov & Zhalij JMP(99)mp;
    Benenti et al JMP(02),
    JMP(02) [and Hamilton-Jacobi].
  @ Radial equation: Erbil qp/03;
    Chadan & Kobayashi JPA(06),
    JPA(06)mp [special potentials];
    Tannous et al PRP(08) [canonical function method];
    Khelashvili & Nadareishvili a1007 [status],
    AJP(11)jun-a1009,
    a1009 [boundary condition].
  @ Numerical:  Ceperley & Alder Sci(86)feb [Monte Carlo];
    Lehtovaara et al JCP(07) [imaginary time propagation];
    Márk a2004 [web-based interactive software];
    > s.a. computational physics.
  @ Other methods:
    Praeger PRA(01) [relaxational approach];
    Matzkin qp/04 [quantum phase for non-solvable V];
    Amore et al JPA(04) [non-perturbative, different scales];
    Robinett EJP(06)qp/05 [image method];
    Sudiarta & Geldart JPA(07) [finite difference time domain, FDTD];
    Kishi & Umehara a0804 [Wick rotation];
    Tezcan & Sever IJTP(09)-a0807;
    Pillai et al AJP(12)nov [Numerov method];
    Lin a1407
      [H = state-preserving + state-changing Hamiltonian];
    Ajaib FP(15)-a1502 [1D, first-order equation];
    Radożycki MolP(16)-a1605 [classical distributions better than WKB];
    Hojman & Asenjo a2007 [based on a potential function for the wave function];
    > s.a. Wegner's Flow.
  @ Variational principle: Perez et al AJP(90)jun [bound states];
    Bhattacharyya AJP(09)jan [bounds on ground-state energy];
    Atai et al a1307.
  @ Auxiliary-field method:
    Buisseret et al JMP(09) [and envelope theory];
    Semay & Silvestre-Brac JPA(10)-a1001 [eigenstates];
    Silvestre-Brac et al JPM(12)-a1101;
    Semay FBS(15)-a1501 [numerical tests for few-boson systems].
  @ Other approximations:
    Krivec & Mandelzweig mp/04 [quasi-linearization];
    Mahapatra et al IJMPA(05)qp/04;
    Friedberg & Lee AP(05),
    Lee JSP(05)qp [low-lying states];
    Amore et al PLA(05)qp [time-dependent problems];
    Friedberg et al ChP(06)qp [iterative];
    > s.a. Born-Oppenheimer Approximation.
  @ Other types of solutions: Garbaczewski RPMP(05)qp/04 [exotic/fractal];
    Kempf & Ferreira JPA(04),
    Calder & Kempf JMP(05) [superoscillating];
    Karaoglu EJP(07) [large class];
    Lekner EJP(08) [rotating wavepackets];
    Mayer a1209
      [solutions without dispersion, and inevitability of wave-packet spreading].
Other References
  > s.a. formulations of quantum mechanics; physics teaching;
  Propagator; quantum systems [including inverse problem].
  * Generalization with a stochastic non-linear term:
    It is motivated by the attempt to model state-vector collapse as a dynamical process.
  @ Non-linear: Gutkin PRP(88);
    Davies PhyA(90) [conservation laws];
    > s.a. non-linear quantum mechanics.
  @ In curved spacetime: DeWitt RMP(57);
    Cheng JMP(72) [from path integral];
    Ben-Abraham & Lonke JMP(73);
    Benn & Tucker PLA(91);
    Mannheim in(00)gq/98 [and equivalence principle];
    Coelho & Amaral JPA(02)gq/01 [conical spaces];
    > s.a. Bethe-Salpeter [relativistic];
      modified quantum mechanics.
  @ For density matrices: Mishra & Pfeifer JPA(07) [with T-dependent potential];
    Shpagina et al a1812 [stationary, and applications].
  @ Other generalizations:
    Tomonaga PTP(46) [and special relativity];
    Micu JPA(99) [q-deformed];
    Kostrykin & Schrader RVMP(99)mp/00,
    JPA(00)mp,
    RVMP(00)mp [1D random Schrödinger operator];
    Stoyanovsky in(04)mp/02 [for field theory];
    Schnaid a1202
      [with finite speed of wave function propagation];
    Diósi PRL(14)-a1401 [diffusive stochastic Schrödinger equation];
    > s.a. deformation quantization; fractional calculus;
      quantum statistical mechanics [stochastic, dissipative Schrödinger equation].
  @ Derivations:
    De la Peña-Auerbach PLA(67) [from Markov process];
    Jordan AJP(91)jul;
    Granik a0801;
    Field EJP(11) [from the Hamilton-Jacobi equation in Feynman's path-integral formulation];
    Deriglazov & Rizzuti AJP(11)aug-a1105 [reparametrization-invariant formulation of classical mechanics];
    Rusov et al AP(11)
      [based on the Chetaev theorem, and pilot-wave theory];
    Grinwald a1407 [from complex Gaussian propagator];
    Marrocco a1705;
    Izadparast & Mazharimousavi a2102 [from a Lagrangian];
    > s.a. origin of quantum mechanics.
  @ Related topics: Vilasi qp/97 [Hamiltonian and integrability];
    Matzkin PRA(01) [amplitude-phase formulation];
    Bar & Horwitz PLA(02)qp [and consistent histories];
    Faraoni & Faraoni FP(02) [conformal transformation to potential-free form];
    Khrennikov qp/03 [conceptual];
    Maz'ya & Shubin AM(05)m.SP/03 [discreteness];
    Efthimiades qp/06 [from averaged energy relation];
    Flego et al PhyA(11) Legendre-transform structure];
    Efthimiades a1307 [conceptual];
    Arsenović et  FP(14)-a1405 [Lagrangian form].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 apr 2021