|  Topology in Physics | 
In General
  @ General references, reviews:
    Finklelstein IJTP(78) [field theory];
    Balachandran FP(94)ht/93;
    Nash in(98)ht/97;
    Rong & Yue 99;
    Lantsman mp/01;
    Heller et al JMP(11)-a1007 [significance of non-Hausdorff spaces];
    Eschrig 11;
    Asorey et al a1211 [fluctuating spacetime topology];
    Bhattacharjee a1606-ln;
    Aidala et al a1708 [and experimental distinguishability].
  @ Topological quantum numbers, invariants:
    Thouless 98;
    Kellendonk & Richard mp/06-conf [bulk vs boundary, and topological Levinson theorem];
    > s.a. yang-mills gauge theory.
  > Related topics:
    see Generic Property; Stability.
  > Online resources:
    see Frederic Schuller 2015 lecture.
In Classical Theories > s.a. electromagnetism [knotted solutions];
  phenomenology of magnetism; Susceptibility
  [topological]; theta sectors.
  * Gauge theory: The
    three paradigms of topological objects are the Nielsen-Olesen vortex
    of the abelian Higgs model, the 't Hooft-Polyakov monopole of the
    non-abelian Higgs model, and the instanton of Yang-Mills theory.
  * Condensed-matter-type
    systems: The best-known examples are the quantization of the
    magnetic flux that pierces a superconductor, which can only increase
    in units of the flux quantum h/2e, the Hall conductance
    of a 2D, low-temperature and high-magnetic-field electron gas, which
    is quantized in units of the conductance quantum \(e^2/h\), and more
    recently the magneto-optical response of a 3D topological insulator,
    quantized in units of the vacuum fine-structure constant,
    \(\alpha = e^2/\hbar c = 1/137\).
  * Hydrodynamics: Topology appears
    in the notion of vortex, relevant both for classical and for quantum fluids.
  @ Gauge theory:
    Monastyrsky 93 [and condensed matter];
    Gross JMP(96) [cohomology and connections];
    Lenz LNP(05)ht/04,
    Jackiw ht/05-en [rev];
    Yang IJMPA(12);
    > s.a. types of yang-mills theories [on a circle].
  @ Condensed matter: Monastyrsky 93 [and gauge theory];
    Avdoshenko et al SRep(13)-a1301 [electronic structure of graphene spirals];
    news nPhys(17)jul;
    Sergio & Pires 19.
  @ Topological charges: Saaty ht/01;
    > s.a. field theory [topological currents].
  @ Related topics: Kiehn mp/01 [topology-changing evolution];
    Díaz & Leal JMP(08) [invariants from field theories];
    Radu & Volkov PRP(08) [stationary vortex rings];
    Seiberg JHEP(10)-a1005 [sum over topological sectors and supergravity];
    Mouchet a1706 [in fluid dynamics, rev];
    Candeloro et al a2104 [and precision of a finite  thermometer];
    > s.a. thermodynamic systems [Maxwell theory].
In Gravitation and Cosmology
  > s.a. Alexandrov Topology; geon;
  lorentzian and riemannian geometry [space
  of geometries]; spacetime topology.
  * Spacetime topology:
    The spacetime manifold can be assigned different topologies; The most
    natural ones are the manifold topology, the Alexandroff topology
    (generated by gab and
    the I ±s), and Johan's
    strong topology for compact spacetimes (more stable under limits).
  * Spatial topology:
    Any compact 3-topology can occur classically, since it can be given a
    metric such that R = −k, with k a positive
    constant, and with this metric it can be made to satisfy the constraints,
    with \(K_{ab} = \lambda\,g_{ab}\), for some constant λ.
  @ References: Clarke GRG(71) [and general relativity];
    Friedman & Mayer JMP(82) [angular momentum and charge];
    Carcassi & Aidala PS(20)-a2006 [spacetime structure may be topological];
    > s.a. topology at cosmological scales; topology change.
In Quantum Mechanics > s.a. path integrals
  [non-trivial configuration-space topology]; theta sectors.
  @ General references: Sudarshan et al AIHP(88);
    Balachandran et al 91;
    Thouless 98 [topological quantum numbers]; Aharonov
    & Reznik PRL(00)qp/99 [local/non-local complementarity];
    Suzuki a1107 [homotopy and path integrals];
    Asorey et al a1211 [survey];
    Neori & Goyal a1501 [fundamental groupoid approach].
  @ Topological quantum phases: Buniy & Kephart PLA(08)ht/06 [second-order];
    Thiang AHP(15)-a1406,
    IJGMP(15)-a1412 [homotopic versus isomorphic];
    Witten RNC(16)-a1510-ln [topological phases of matter, and fractional quantum Hall effect];
    Asorey nPhys(16)-a1607 [topological matter];
    Aguilar et al a1903.
  @ Topology and quantum states: Balachandran Pra(01)qp/00-conf;
    Dürr et al AHP(06)qp,
    JPA(07) [Bohmian mechanics];
    Prudêncio & Cirilo-Lombardo IJGMP(13)-a1402 [entanglement and non-trivial topologies];
    Pérez-Pardo et al IJGMP(15)-a1501 [boundary dynamics and topology change];
    Qin et al NJP(18)-a1611 [topological invariants in strongly interacting quantum systems];
    Arkinstall et al PRB(17) [lattice with topological states];
    > s.a. entanglement; entanglement
      and spacetime; models of topology change.
  @ Topology on the space of states: Bugajski PLA(94);
    Zhu & Ma PLA(10).
    > Related topics: see aharonov-bohm effect;
Aharonov-Casher Effect.
In Quantum Field Theory > s.a. CPT [violation mechanism];
  QCD; QED [in non-trivial backgrounds];
  qft in curved backgrounds.
  @ General references: Monastyrsky 87;
    Schwartz 93, 94 [III, IV];
    Bandyopadhyay 03.
  @ Related topics: Blau IJMPA(89) [representation-independence];
    Jackiw mp/05 [fractional quantum numbers, non-trivial phonons];
    Baez & Stay LNP-a0903 [physics, topology, logic and computation];
    Brunetti et al AHP(09)-a0812 [2D massive bosons];
    Buchholz et al LMP(19)-a1808 [linking numbers];
    Bessa & Rebouças a1910 [charged-particle motion in topologically non-trivial spaces];
    Acquaviva et al a2012 [topologically inequivalent quantizations];
    > s.a. charge.
In Other Theories > s.a. Kink;
  knot theory in physics; spacetime topology.
  @ String theory:
    Balachandran et al NPB(87);
    Boi IJGMP(09).
  @ Quantum topology:
    Isham CQG(89);
    Isham et al CQG(90);
    Isham in(91);
    Finkelstein & Hallidy IJTP(91) [and quantum logic];
    Grib & Zapatrin IJTP(96)gq/95 [topology as an observable, and the space of topologies];
    Schlesinger JMP(98);
    > s.a. quantum spacetime [relational topology].
  @ Other quantum gravity: Patrascu JMP(16)-a1410 [and the black-hole information paradox];
    > s.a. canonical quantum gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 apr 2021