|  Quantum Mechanics | 
In General
  > s.a. formulations; foundations [including ontology and other philosophical aspects];
  interpretations; logic; quantum systems.
  * Regime: Situations where length scales
    are small with respect to energy scales, and a small number of states are occupied.
  * Features: Formally, the most
    important concept introduced with respect to classical mechanics is that of
    probability amplitudes, with their particular combination laws; These yield
    amplitudes for processes, described in terms of unique (classical) trajectories;
    Physically, the distinguishing features are complementarity (and the related uncertainty
    principle), entanglement (related to non-locality), and the measurement problem.
  * 2012: Quantum information, quantum
    foundations and quantum gravity motivate the idea of considering quantum mechanics
    as one of a class of possible theories; A lot of current work seeks to understand
    the special features and properties which single out quantum mechanics, and the
    possibilities for alternative theories; Some of the formalisms which have been used
    in this context are operational theories, categorical and topos-theory-based
    quantum mechanics, anhomomorphic logic; > s.a. modified
    quantum theory.
  > Features:
    see complementarity; entanglement;
    quantum effects [including applications]; uncertainty;
    Wave-Particle Duality.
  > Specific concepts:
    see  complex structure; information;
    momentum; observables;
    Phase; schrödinger equation;
    symmetries; Trajectories.
  > Related topics:
    see angular momentum; euclidean geometry;
    lie algebra; logic; mind;
    Quantum Channel; spacetime;
    Supersymmetry.
 Areas:
  see experiments; foundations; history;
  measurement; particle effects; semiclassical
  quantum theory; technology.
 Areas:
  see experiments; foundations; history;
  measurement; particle effects; semiclassical
  quantum theory; technology.
General Aspects and References
  > s.a. diffraction [Kapitza-Dirac]; probability;
  Process; quantum states; waves.
  @ Original papers: Heisenberg ZP(25);
    Born & Jordan ZP(25);
    Born et al ZP(26);
    Dirac PRS(26);
    Van der Waerden ed-67.
  @ General references: Houston AJP(37)apr;
    Gudder & Boyce IJTP(70);
    Jauch in(71);
    Komar in(71);
    Giles in(75);
    Loinger RNC(87);
    Amann et al ed-88;
    Drieschner et al IJTP(88);
    Von Baeyer ThSc(91)jan;
    Foschini qp/98 [logical structure];
    Bub SHPMP(00)qp/99;
    Arndt et al qp/05-conf,
    comm Mohrhoff qp/05;
    Nikolić FP(07)qp/06 [myths and facts];
    Rieffel qp/07-conf [from information pov];
    Aerts in(09)-a0811 [quantum structures];
    Schmelzer FP(09)-a0901 [Hamiltonian operator alone not enough];
    Brukner a0905;
    Strocchi EPJP(12)-a1112;
     Cabello a1212 [Specker's fundamental principle];
    Goyal PRA(14)-a1403 [from Feynman's rules];
    Haag a1602-post [fundamental aspects];
    Khrennikov FP(17)-a1704 [the present situation];
    Svensson a1803 [claimed inconsistencies].
  @ And foundations of physics: Josephson FP(88)-a1110 [limitations];
    Benioff PRA(99)qp/98;
    Neumaier qp/00;
    Iten et al a1807
      [using neural networks to extract physical concepts];
    Drossel a1908-talk
      [limitations, from condensed matter and statistical physics];
    > s.a. foundations of quantum theory.
Books and Lecture Notes
  > s.a. physics teaching.
  @ Texts: Bohm 51;
    Dirac 58
    [comment Drago a2101];
    Dicke & Wittke 60;
    Fermi 61;
    Messiah 62;
    Blokhintsev 64;
    Dirac 64;
    Kramers 64;
    Gottfried 66;
    Flügge 75;
    Martin 81;
    Prigovecki 81;
    Sokolov, Ternov & Zhukovskii 84;
    Pauling & Wilson 85;
    Umezawa & Vitiello 85;
    Das & Melissinos 86;
    Wu 86;
    Galindo & Pascual 90;
    Greenhow 90;
    Lévy-Leblond & Balibar 90;
    van Fraassen 91;
    Park 92;
    Peebles 92;
    Bohm 93;
    Thankappan 93;
    Greiner 94;
    McGervey 95;
    Gottfried & Yan 03;
    Liboff 03;
    Ghatak & Lokanathan 04;
    Basdevant & Dalibard 05;
    Basdevant 07;
    Schwabl 07; Auletta et al 09;
    Mathur & Singh 09;
    Afnan 11 [ebook];
    Das 12;
    Le Bellac 12;
    McIntyre 12
      [r AJP(12)jul];
    Fayyazuddin & Riazuddin 13;
    Sakurai & Napolitano 20.
  @ Special emphasis: Paul 08 [quantum effects];
    Razavy 10 [Heisenberg approach];
    Müller-Kirsten 12 [path integrals];
    Gitterman 12 [modern, r CP(12)];
    Salasnich 14 [light and matter];
    Commins 14 [experimentalist's approach];
    Chang & Ge 17 [recent developments];
    Coecke & Kissinger 17 [diagrammatic];
    D'Ariano et al 17 [information theory];
    Komech a1907-ln [for mathematicians].
  @ Conceptual: Jauch 68;
    Mayants 84;
    Krips 88;
    d'Espagnat 89,
    95;
    Ballentine 90;
    Peres 94;
    Bitbol 96;
    Home 97;
    Omnès 99 [II];
    Mohrhoff 11;
    Baaquie 13;
    Ballentine 14;
    Bricmont 16 [II];
    Dhand et al a1806 [II, for non-science majors];
    Dhand et al a1806 [simple experiments];
    Becker 18 [I];
    Greenstein 19.
  @ Problems: ter Haar ed-75;
    Squires 95;
    Lim 98;
    Capri 02;
    Tamvakis 05;
    Basdevant & Dalibard 06;
    Galitski et al 13 [r CP(13),
    PT(14)jun].
  @ Applications: Osborn 88;
    Singh 96;
    Landshoff et al 98;
    Fitts 99 [chemistry];
    Harrison 00;
    Robinett 06 [II];
    Swanson 06;
    Desai 09 [field theory;
    r CP(11)];
    Schumacher & Westmoreland 10 [information, processes];
    Le Bellac 14;
    Bagarello 19 [social sciences, etc];
    Basdevant & Dalibard 19 [modern physics];
    Petersson et al a2012-ln [applied mathematics];
    > s.a. electricity [semiconductors].
  @ I: Hoffmann 59;
    Bohr 61;
    Bergmann 62; Guillemin 68;
    Hey & Walters 87; Rohrlich 87;
    Albert 93; Gilmore 94;
    Zukav 94; Styer 00;
    Al-Khalili 03;
    Bruce 04;
    Kakalios 10
      [r CP(11)#6, not good];
    Lederman & Hill 10;
    Scarani et al 10 [interesting simple systems];
    Ford 12;
    Whitaker 12;
    Griffiths 13;
    Ball 18
    and Becker 18
      [r sn(19)jan];
    > s.a. physics.
  @ II: Eisberg & Resnick 74;
    French 78;
    Sudbery 86 [particle physics];
    Chester 87;
    Smith 91 [historical];
    Białynicki-Birula et al 92;
    McMurry 94;
    Hannabuss 97;
    Levin 01;
    Capri 02;
    Gasiorowicz 03;
    Englert 06 [II/III];
    Rae 08;
    Gaasbeek a1007;
    Wilcox 12 [and particles, many illustrations];
    Townsend 12;
    Longair 13 [historical];
    Binney & Skinner 14;
    Susskind & Friedman 14;
    Griffiths & Schroeter 18;
    Shoshany a1803-ln [high-school level];
    Reynolds a1809.
  @ III: Dyson 51
      & qp/06 [advanced];
    Schiff 68;
    Lipkin 73 [selected topics];
    Cohen-Tannoudji et al 77;
    Coleman ln(94)-a2011;
    Shankar 94;
    Merzbacher 98;
    Rosu phy/98-ln;
    Lindenbaum 99;
    Newton 02;
    Cohen qp/06-ln [II/III];
    Gyftopoulos a0709 [current understanding];
    Schwabl 08 [advanced];
    Konishi & Paffuti 09;
    Dyson & Derbes 11;
    Barletta a1201-ln;
    Scheck 13;
    Adler a1401-conf [the future of quantum mechanics];
    Weinberg 15;
    Picasso 16;
    Dick 16 [materials and photons].
  @ III, operational / qualitative: Migdal 77;
    Busch et al 95;
    Olshanii 13.
  @ III, mathematical: Von Neumann 55;
    Mackey 63;
    Nikodym 66;
    Hannabuss 97 [coherent states, group representations];
    Kalmbach 98;
    Steeb 98;
    Naudts mp/00 [from symmetry];
    Komech mp/05-ln;
    Villaseñor AIP(08)-a0804 [Segal's approach];
    Govaerts a0812-proc;
    Strocchi 08;
    Bohm et al RPMP(09) [rev];
    Dimock 11;
    Heinosaari & Ziman 12 [r CP(12)];
    Gustafson & Sigal 12;
    Dereziński & Gérard 13 [r CP(14)#2].
  @ Abstract: Mielnik CMP(68);
    Piron 76;
    Ludwig 83-85,
    85-87.
  @ And group theory: Weyl 50; Mackey 68;
    Simms 68;
    Aldaya & Azcárraga FdP(87);
    Mirman 95;
    Lam 09 [symmetries and geometry].
  > Online resources: see Lee Smolin
    talk
    at PI, 2019-04-17. 
Quantum Mechanics: The dreams stuff is made of.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 jan 2021