|  Phase Space | 
In General
  > s.a. hamiltonian dynamics; momentum;
  symplectic structures and types
  of symplectic structures [covariant].
  * Idea: Physically, the manifold
    M of all classical states  of a system, usually specified in terms of
    configuration coordinates and canonical momenta (canonical phase space) or as
    histories (covariant phase space) with additional structure, these two being
    classically equivalent; Classically, a symplectic manifold (M, Ω)
    with a preferred function H, such that the evolution of a state is
    represented by the flow of its Hamiltonian vector field; In the quantum theory,
    one needs in addition a complex structure J on M.
  * Examples: In many cases,
    M has a cotangent bundle structure.
  * Remark: A different point of view
    is to consider the cotangent bundle structure as essential and call phase space
    such a bundle even if covectors are not interpreted as momenta (see the approach
    of Kijowski and Tulczyjew).
  @ General references: Nolte PT(10)apr [history];
    Sławianowski et al a1404 [need, in physics];
    Albert et al JPA(17)-a1709 [different types].
  @ In statistical mechanics:
    Gallavotti CMP(01) [counting cells];
    Vesely EJP(05) [simple approach];
    Sperling PRA(16)-a1605 [maximally singular phase-space distributions].
Special Topics and Results
  * Phase curve: A curve representing
    the evolution of a system in phase space.
  * Liouville theorem: The phase-space
    distribution function is constant along the trajectories of a system; I.e., time
    evolution preserves the phase space volume.
  * Lagrange bracket: Given two functions
    u and v belonging to some set of 2n independent functions of
    the canonical qs and ps in phase space, their Lagrange bracket is
{u,v}q, p := {∂qi / ∂u} {∂pi / ∂v} − {∂pi / ∂u} {∂qi / ∂v} ;
    It is a canonical invariant, but mostly of historical importance now.
  @ Liouville theorem: in Tolman 38 [proof];
    Momeni et al a0904-wd,
    Abadi et al IJMPB(09)-a0904 [rev];
    Bravetti & Tapias JPA(15)-a1412 [for non-conservative  systems];
    > s.a. Wikipedia page.
  @ Transformations: Luís PRA(04) [in phase space and Hilbert space].
  @ Types of systems: Mann et al JPA(05) [finite phase space];
    Tarasov JPA(05)m.DS/06 [non-Hamiltonian].
  @ Fermions, Grassmann phase space methods: Dalton et al AP(16)-a1604 [for field theories];
    Polyakov PRA(16)-a1609 [and probability distributions];
    > s.a. hamiltonian systems.
  @ Related topics: Friedman a0802
      [relativistic, and representations of the Poincaré group].
  > Related topics: see formalism of chaos
    [stochastic layer/web]; doubly special relativity; magnetism
    [momentum-space magnetic field]; Order [ordered and disordered states].
And Quantum Theory > s.a. canonical
  quantum mechanics; formulations of quantum theory;
  particle phenomenology in quantum gravity.
  * Quantum phase space: The complex
    projective space \({\mathbb C}{\rm P}^n\) with a Kähler structure given by
    the Fubini-Study metric and an associated symplectic form; The Schrödinger
    equation generates Hamiltonian dynamics on Γ.
  * Approaches: Two approaches
    to the structure of quantum phase space are the Weyl-Wigner formalism and the
    theory of Coherent States.
  * Distribution functions: Different
    ones are used, such as the Wigner distribution function, the Glauber-Sudarshan
    P and Q functions, the Kirkwood distribution function and the
    Husimi distribution function, or Dirac's quasiprobability distribution.
  @ General references:
    Flandrin et al PLA(84) [properties];
    Wang & O'Connell FP(88);
    Kim & Wigner AJP(90)may;
    Fairlie & Manogue JPA(91);
    Kim & Noz 91;
    Schroeck IJTP(94) [advantages],
    96;
    Stulpe 97-qp/06;
    Anastopoulos AP(03);
    Campos JPA(03);
    Isidro MPLA(05)qp/04 [complex structure and quantum];
    de Gosson JPA(05)mp [irreducible representation of the Heisenberg algebra];
    Chaturvedi et al JPA(06)qp/05,
    qp/05/JPA [new approach];
    Smith JPA(06);
    Nasiri et al JMP(06)qp [general approach];
    Nha PRA(08)-a0804 [conditions for physical realizability];
    Ranaivoson et al a1304;
    Burić et al PRA(12)-a1209,
    FP(13) [Hamiltonian formulation, and mixed states];
    Karageorge & Makrakis a1402 [semiclassical initial-value problem];
    Curtright et  al 14 [intro];
    Colomés et al JCE(15)-a1507 [comparing Wigner, Husimi and Bohmian distributions];
    Rundle & Everitt a2102 [rev].
  @ Reviews: Lee PRP(95) [distribution functions];
    Brooke & Schroeck IJTP(05)qp/06;
    Lobo & Ribeiro a1212;
    Rundle & Everitt a2102 [and applications].
  @ Related topics: Sala et al PLA(97) [equivalence, with singular kernel];
    Ban JMP(98) [representation of vectors];
    Brif & Mann PRA(99)qp/98 [with Lie symmetries];
    de Gosson JPA(01) [and the symplectic camel];
    Dragoman PiO(02)qp/04 [and classical optics];
    Chruściński OSID(06)qp/04 [Berry's phase];
    Andriambololona et al IJAMTP(15)-a1503,
    a1711 [linear canonical transformations];
    de Gosson & de Gosson a1510 [time-symmetric quantum mechanics].
  @ Non-commutative phase space:
    Giunashvili mp/02;
    Li et al MPLA(05)ht/04 [oscillator];
    Li & Dulat a0708 [and spacetime symmetries];
    Bernardini & Bertolami PRA(13) [effects];
    Liang et al PRA(14) [detection, and Aharonov-Bohm effect];
    Chatzistavrakidis PRD(14);
    Beggs & Majid a1410 [quantum Riemannian geometry, and non-associativity];
    > s.a. non-commutative theories.
  @ Deformed phase space:
    Khosravi et al GRG(10)
      [equivalence with canonical quantization, in cosmological example];
    Barcaroli et al PRD(15)-a1507 [phase-space geometry from modified dispersion  relations];
    Lukierski et al PLB(15)-a1507 [covariant, and Hopf algebroids];
    Astuti & Freidel a1507 [Lorentz-invariant deformations];
    Arzano & Nettel PRD(16)-a1602 [with group-valued momenta];
    Meljanac et al PLB(17)-a1610 [and Poincaré symmetry].
  @ Other proposals:
    García de Polavieja PLA(96) [causal];
    Tsekov IJMS(01)-a1505;
    de Gosson JPA(05) [Torres-Vega & Frederick equation];
    de Gosson FP(13)-a1106 [quantum blobs and squeezed states];
    Watson & Bracken PRA(11) [phase-space amplitudes, for spinor systems];
    Bolognesi IJMPD(14)-a1207 [generalized Fourier transform, and dark energy];
    Costa Dias et al JPDOA(12)-a1209 [Schrödinger and Moyal representations];
    Gneiting et al PRA(13)-a1309 [curved configuration space];
    Bamber & Lundeen PRL(14) [Dirac's distribution, experimental observation];
    López a1509 [extended phase space];
    Jong et al a1710 [statistical formalism];
    Budiyono PRA(19)-a2005 [epistemically restricted];
    Sato a2012 [three-dimensional phase space, Nambu Bracket].
  @ Discrete phase space:
    Marchiolli & Ruzzi AP(12),
    Marchiolli & Mendonça AP(13)-a1304 [discrete version of the Weyl-Wigner-Moyal formalism];
    Das & DeBenedictis a1504;
    Hashimoto et al a1802 [phase point operators].
  > Related subjects: see
    classical vs quantum states;  logic; path
    integrals; wigner functions; Wigner Transform.
  > Specific topics: see Fermi Functions;
    geometric quantization [torus phase space]; Husimi Functions.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2021