|  Wigner Functions | 
In General > s.a. quantum mechanics; formulations
  of quantum theory; phase space / entropy;
  experiments in quantum mechanics; quantum states.
  * Idea: The distribution
    function or density matrix in phase space quantization; Its time evolution
    is governed by Moyal's equation.
  $ Def: For a solution
    ψ of the Schrödinger equation, the Wigner function
    is the real function
W(x, p, t):= (π\(\hbar\))−1 ∫ dy ψ*(x+y, t) ψ(x−y, t) exp{2i py/\(\hbar\)} .
* Properties: It is not directly a probability distribution function, but it is useful, and satisfies
∫ dp W(x, p, t) = |ψ(x, t)|2, ∫ dx W(x, p, t) = |ψ(p, t)|2.
  * Hudson's theorem:
    For non-relativistic continuous variable systems, the Wigner function of a pure state has no
    negative values if and only if the state is Gaussian.
  @ General references:
    Wigner PR(32) [proposal];
    Tatarskii SPU(83);
    Narcowich & Fulling ed;
    Royer PRL(85);
    Wootters AP(87);
    Dragt & Habib qp/98-proc [and symplectic maps];
    Li et al PRA(04),
    Revzen FP(06) [and phase-space probability density];
    Khademi qp/06;
    Nassimi a0706;
    Johansen a0804;
    Case AJP(08)oct [and Weyl transforms, for pedestrians];
    Surhone et al ed-10;
    O'Connell in(09)-a1009 [rev];
    Bauke & Itzhak a1101;
    Bednorz & Belzig PRA(11),
    Bondar et al PRA(13)-a1202 [negativity];
    Schroeck JPA(12) [probability];
    Steuernagel et al PRD(12) [flow and topological order in quantum dynamics];
    Bondar et al PRA(13) [as a wave function];
    Giese et al proc(14)-a1402 [intro];
    Blass & Gurevich a1502
    [and marginal distributions of x and p];
    Rakotoson et al a1707 [phase-space representations];
    Schwonnek & Werner a1802 [for arbitrary sets of observables];
    Perepelkin et al a1904
      [new representation, and universal density matrix].
  @ Propagator: Dittrich et al PRL(06)qp/05 [semiclassical];
    Ozorio de Almeida & Brodier AP(06);
    Sels et al JPA(13)-a1207 [path-integral approach];
    Cabrera et al PRA(15)-a1212 [effective numerical propagation].
  @ And information theory:
    Frieden & Soffer PRA(06);
    Bernardini & Bertolami a1901-conf [continuity equations for quantum information flux].
  @ Hudson's theorem: Gross JMP(06),
    APB(07)qp-proc [for finite-dimensional system];
    Mandilara et al PRA(09)-a0808 [for mixed states].
  @ Relationships:
    Leavens & Sala Mayato PLA(01) [and wave function];
    Bracken RPMP(06)qp/05 [vs Hilbert space, and superposition];
    Praxmeyer & Wodkiewicz LP(05)phy [and spectrum, for light];
    Isidro IJGMP(08)-a0710 [and symplectic connection];
    Parisio JPA(08)-a0712 [Bargmann representation];
    Lieb & Ostrover JMP(10)-a1007 [Gaussians and localization in phase space];
> s.a. quantum chaos.
 Related topics:
  see specific systems and generalizations.
 Related topics:
  see specific systems and generalizations.
Related Topics
  > s.a. huygens principle; pilot-wave interpretation;
  quantum correlations; quantum measurement;
  classical limit; Wigner Transform.
  @ Semiclassical states: Rios & Ozorio de Almeida JPA(02)mp/01;
    Veble et al JPA(02);
    de Gosson & de Gosson qp/06 [squeezed];
    Pulvirenti JMP(06);
    de Gosson JPA(08) [and Feichtinger algebra];
    Dechoum et al PRA(10)-a1107 [two-mode entangled state];
    Song & Fan IJTP(12) [squeezed];
    Kalligiannaki & Makrakis a1402 [perturbative analysis];
    Giannopoulou & Makrakis a1705 [approximate series solution];
    > s.a. decoherence; quantum states.
  @ Other states: Tegmen NCB(07)mp [simple states];
    Vanbever a2104
      [vacuum, as majorizing mixtures of Fock states].
  @ And pilot-wave interpretation: Dias & Prata PLA(01)qp,
    PLA(02)qp;
    Hiley FP(10).
  @ And foundations: Banaszek & Wódkiewicz PRA(98) [EPR];
    Franco qp/07 [EPR].
  @ Calculation: Hug et al JPA(98);
    Samson JPA(00) [coherent state path integral],
    JPA(03)qp [phase-space path integral];
    Curtright et al JMP(01) [generating functions];
    Sels et al PhyA(13) [propagator for complex dynamical systems, path integral approach];
    Kakofengitis et al PRA(17)-a1611 [integral form];
    Gozzi et al a2004 [Marinov path interal and response field].
  @ Time evolution:
    Schleich et al FP(88) [and transition probabilities];
    Moshinsky & Sharma AP(00) [and canonical transformations];
    Hashimoto et al JPA(07)qp/06 [and Markov process];
    Zueco & Calvo JPA(07)qp/06 [Bopp operators for dynamics];
    Lewis-Swan et al a1503
      [interpretation of individual phase-space trajectories].
  @ Entanglement: Hardy et al PS(04);
    Narnhofer JPA(06);
    Ozorio de Almeida LNP(09)qp/06 [in phase space].
  @ Other topics: Mehta JMP(64);
    Włodarz PLA(88) [averaging and positivity];
    Zavialov & Malokostov TMP(99)ht/98;
    Lougovski et al PRL(03)qp/02 [operational def];
    Dias & Prata JMP(04)ht/03 [t-dependent transformations];
    Oliveira et al AP(04) [from star product];
    Klauder & Skagerstam JPA(07) [generalized representations of operators];
    Scott & Caves AP(08)-a0801 [sub-Planck structure];
    Kube et al JCP(09) [Monte Carlo sampling];
    Pennini & Plastino PLA(10) [thermal effects];
    Mari & Eisert PRL(12)-a1208 [Wigner-function positivity and  efficient classical simulation];
    Przanowski & Brzykcy a1512 [number-phase Wigner function];
    Hernández & Riedel a2103 [rapidly decaying Wigner functions];
    > s.a. complexity;
      non-extensive statistical mechanics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 3 may 2021