|  Quantum Oscillators | 
Quantum Harmonic Oscillator
  > s.a. feynman propagator; formulations [combinatorial];
  oscillators; Polymer Representation;
  time in quantum theory.
  * Propagator: The Feynman
    propagator for the quantum harmonic oscillator is (Δt:=
    t2−t1)
DF(x2, t2; x1, t1) = [mω / (2πi sin(ωΔt))1/2] exp{i mω/2 [(x22 + x12) · (ωΔt) − 2 x2 x1 csc(ωΔt)] } .
  @ General references:
    Jauch & Hill PR(40);
    Leubner et al AJP(88)dec [vs classical];
    Boya et al IJMPA(98) [inequivalent];
    Muñoz AJP(98)mar [and integral equations];
    Jordan AJP(01)oct [simple solution];
    Baker et al AJP(02)may [applications, numerical];
    Kastrup AdP(07)qp/06 [new look];
    Plimak & Stenholm AP(08) [response properties];
    Marsiglio AJP(09)mar [and bound states of short-range potentials];
    Andrews AJP(16)apr-a1509 [evolution of wave functions];
    Zubizarreta et al a1607 [structure of the Hilbert space];
    Rushka & Freericks a1912/AJP [algebraic solution].
  @ 2D: Chen & Huang JPA(03) [coherent states, vortex structure];
    Montesinos & Torres del Castillo PRA(04),
    comment Latimer PRA(07)qp/06 [different symplectic structures];
    Doll & Ingold AJP(07)mar [semiclassical, Lissajous curves];
    Borondo et al JPA(09)-a0907 [and Bohmian trajectories].
  @ Entanglement:
    Kim & Iafrate FPL(04) [coupled];
    Rios JPA(07) [non-interacting];
    Jost et al Nat(09)jun-a0901 [non-interacting, demonstration].
  @ Different approaches: Donoghue & Holstein AJP(88)mar [path integral];
    Koikawa PTP(01)ht,
    PTP(02)ht/01 [Moyal];
    Shiri-Garakani & Finkelstein JMP(06) [general quantization];
    Finkelstein & Shiri-Garakani IJTP(11)-qp/06 [as model for spacetime decondensation];
    Nettel & Quevedo mp/06-proc [topological quantization];
    Vicary IJTP(08) [categorical framework];
    Pimentel & de Castro EJP(13)-a1211 [Laplace-transform approach];
    Ahmadzadegan et al PRA(16)-a1510 [Koopman and Moyal formalisms, classical and quantum aspects];
    Nagao & Nielsen a1902 [future-included];
    Belmonte & Cuéllar MPAG(20)-a2001 [Weyl quantization];
    Bojowald et al a2012 [algebraic derivation of eigenvalues];
    Mostowski & Pietraszewicz a2104 [Wigner function, classical limit];
    > s.a. path integrals [non-standard].
  @ Green function: 
    Khrebtukov & Macek JPA(98);
    Shao AJP(16)oct [elementary derivation];
    > s.a. feynman propagator.
  @ Coupled oscillators: Maxson ht/03,
    ht/03,
    ht/03,
    ht/03 [correlated];
    Colosi a0706 [general relativistic, two-point function];
    Bhattacharya et al AJP(13)apr.
  @ Coupled to a heat bath: Ford & O'Connell PhyE(05)qp/06;
    Isar & Scheid PhyA(07)-a0705 [decoherence and classical correlations];
    Ford & O'Connell PRA(14)-a1408 [two oscillators];
    Kheirandish PLA(18)-a1806 [exact quantum propagator and density matrix].
  @ Other modifications: Fernández a2007 [rotating harmonic oscillator];
    Aremua & Gouba JPComm(21)-a2012 [on the half line, affine quatization].
  @ Related topics: de la Peña & Cetto JMP(79) [and stochastic electrodynamics];
    Dattoli & Torre NCB(95) [phase space, coherent states];
    Lorente PLA(01)qp/04 [discrete model];
    Morigi et al PRA(02) [irreversibility];
    Leshem & Gat PRL(09) [violation of macroscopic realism];
    Betz & Castrigiano CMP(11) [coupled to a photon field, density of states];
    Wang a1303 [new approach];
    Suslov PS(13) [variant of Berry's phase];
    Chowdhury et al PRL(20)-a1907 [squeezed states, signature].
  > States: see fock space;
    coherent states; hilbert space [inverted];
    representations of quantum mechanics [Bargmann].
  > Other topics: see approaches to quantum
    mechanics; Born-Jordan Quantization; Coarse-Graining;
    deformation quantization; geometric quantization;
    quantum-classical coupling; resonance;
    statistical-mechanical systems.
Anharmonic Oscillators
  @ Cubic:
    Ferreira & Sesma JPA(14) [eigenstates].
  @ Quartic:
    Pesquera & Claverie JMP(82) [in stochastic electrodynamics];
    Matamala & Maldonado PLA(03),
    Liverts et al JMP(06) [spectrum and eigenfunctions, analytic];
    Mutuk a1811 [energy levels, neural network approach];
    Blinder a1903 [eigenvalues].
  @ Other / non-linear / perturbed:  Pathak JPA(00)mp/02;
    Speliotopoulos JPA(00) [spectrum];
    Calogero & Graffi PLA(03);
    Calogero PLA(03);
    Bhattacharyya & Bhattacharjee PLA(04)
      [subharmonic, V ∝ |x|r];
    Gómez & Sesma in(04)qp [bound states],
    JPA(05)qp [new approach];
    Cariñena et al AP(07) [solvable];
    Liverts & Mandelzweig PS(08) [approximate solution];
    Fernández a0804 [eigenvalues, upper and lower bounds];
    Midya & Roy JPA(09) [exactly solvable, quasi-exactly solvable et al];
    Wang & Liu IJTP(09);
    Nachtergaele et al RVMP(10) [anharmonic oscillator lattice systems];
    Tosto a1105 [simple quantum model];
    Wójcik APPB-a1210 [numerical renormalization group procedure];
    Fernández & García CEJP(14)-a1310 [V(x,
      y) = x2y2; eigenvalues
      and eigenfunctions; the spectrum seems to be discrete];
    Fernández & García APol(17)-a1511 [accurate calculation of eigenvalues];
    > s.a. coherent states.
  @ Semiclassical states: Matzkin & Lombardi JPA(05)-a0706 [quantum and semiclassical phase functions];
    Moncrief et al JMP(12)-a1201 [semiclassical approach];
    Brizuela PRD(14)-a1411 [dynamical evolution of classical and quantum probability distributions in terms of moments].
  @ Perturbation methods:  Cicuta ht/97;
    Amore mp/04-proc [classical and quantum];
    Voros mp/06-proc;
> s.a. Perturbation Methods.
Damped Oscillator
  > s.a. Lindblad Equation; quantum probability.
  * Idea: A dissipative
    system; > s.a. dissipation.
  @ General references:
    Pedrosa & Baseia PRD(84) [+ oscillator bath];
    Milburn & Holmes PRL(96);
    Isar & Sandulescu RJP(92)qp/06 [rev];
    de Brito et al NCB(98);
    Um et al PRP(02);
    Banerjee & Mukherjee JPA(02)qp/01 [canonical approach];
    Blasone et al qp/03-conf;
    Montesinos PRA(03) [Heisenberg picture];
    Latimer JPA(05)qp/04;
    López & López IJTP(06)qp/05;
    Endo et al IJGMP(08)-a0710,
    Fujii & Suzuki IJGMP(09)-a0806 [general solution];
    Cordero-Soto et al a0905;
    Baldiotti et al PLA(11)-a1005;
    Philbin NJP(12) [with a continuum of oscillators as reservoir];
    Barnett et al a1508 [strongly damped];
    Ahmed et al JMP-a1902;
    Bagarello et al PLA(19)-a1906,
    reply to comment a1910
      [no quantization using the Bateman lagrangian].
  @ Bateman's dual system: (A damped simple harmonic oscillator coupled to its time-reversed image)
    Blasone & Jizba AP(04)qp/01.
  @ Related topics: Kheirandish & Amooshahi MPLA(05)qp [radiation reaction];
    Chruściński & Jurkowski AP(06) [resonances];
    Isar O&S(07)qp/06-conf [decoherence, Lindblad theory].
  @ In alternative approaches:
    Vandyck JPA(94) [pilot-wave theory];
    Dito & Turrubiates PLA(06)qp/05 [deformation quantization];
    Fujii qp/07-conf [complex time].
Other Types and Effects > s.a. decoherence;
  Dirac Oscillator; histories formulation;
  non-commutative systems; Perturbation Methods.
  @ Relativistic: Guerrero & Aldaya
    MPLA(99) [perturbative];
    Toyama & Nogami PRA(99);
    Bars PRD(09)-a0810;
    Arbab a1709 [quaternionic].
  @ Inverted: Blume-Kohout & Zurek PRA(03)qp/02 [upside down, decoherence];
    Chruściński JMP(04)mp/03;
    Yuce et al PS(06);
    Golovinski a1905 [forced]; Bhattacharyya et al SciPost(21)-a2007 [chaos and complexity].
  @ On the sphere and hyperbolic space: Cariñena et al AP(07)-a0709 [2D];
    Mardoyan a0708-proc [in d dimensions];
    Quesne PLA(15)-a1411.
  @ Forced, time-dependent:
    Dodonov PLA(96) [kicked];
    Graffi & Yajima CMP(00)mp [forced];
    Kim & Yee PRA(02)ht;
    Moya-Cessa & Fernández-Guasti PLA(03)qp [sudden change, coherent states];
    Adler JPA(05)qp/04 [stochastic collapse and decoherence];
    Gómez & Villaseñor AP(09) [and quantum field theory];
    Velasco-Martínez et al a1409 [unitary approach];
    > s.a. stochastic quantization; Wigner Transform.
  @ With gup, minimal length: Chang et al PRD(02)ht/01;
    Nouicer PLA(06);
    Gemba et al a0712
      [algebraic solution, deformed su(1,1) algebra];
    Fakel & Merad JMP(09);
    Lewis & Takeuchi PRD(11);
    Valtancoli MPLA(12)-a1205 [with a minimal uncertainty in position];
    Valtancoli a1306 [with a minimal length];
    Das et al CJP(16)-a1412 [in phase space];
    Quintela et al BJP(16)-a1510 [classical limit].
  @ Other deformed oscillators:
    Man'ko et al qp/97-proc;
    De Freitas & Salamó ht/99;
    Gruver PLA(99);
    Sogami & Koizumi PTP(02)mp/01;
    Isar & Scheid PhyA(02)qp/07,
    PhyA(04)qp/07 [in dissipative environment];
    Albanese & Lawi JPA(04)ht/03;
    Narayana Swami qp/04 [and intermediate statistics];
    Jafarov et al JPA(07)mp [Wigner function];
    Batouli & El Baz FP(14) [classical interpretation];
    Sadurní & Rivera-Mociños JPA(15)-a1504 [with fractal position spectrum];
    > s.a. modified coherent states [including Grassmann].
  @ Pais-Uhlenbeck oscillator: (An example of higher-derivative theory)
    Mannheim & Davidson PRA(05)ht/04 [Dirac quantization];
    Andrzejewski et al PTP(11)-a0904 [Euclidean path-integral approach].
  @ Supersymmetric:
    Thienel JPA(96) [Bargmann representation];
    > s.a. coherent states.
  @ Coupled oscillators: Bender et al PRA(14)-a1406 [PT-symmetric];
    Bruschi et al a1912 [time evolution].
  @ Other types: Dragovich TMP(94)ht/04,
    IJMPA(95)ht/04 [adelic];
    Banerjee & Ghosh JPA(98) [chiral];
    Badescu & Landsberg JPA(02) [τ-oscillator];
    Kim & Page qp/02 [generalized];
    Blasone et al PLA(03)qp/02 [group contraction];
    Guido a1208 [Intrinsic Quantum Oscillator (IQuO)];
    Valtancoli PTEP(13)-a1306 [in a Snyder geometry];
    Belenchia et al CQG(19)-a1901 [non-local, Hamiltonian formulation];
    Giardino EPJP(21)-a2101 [quaternionic];
    > s.a. stochastic quantization [Fermi oscillator].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 15 apr 2021