|  Light | 
In General
  > s.a. electromagnetism / causality
  [light cone]; physical constants [speed].
  * History: Early ideas –
    Emission theory (light from our eyes shines upon the objects we see),
    believed by Plato, Euclid and Ptolemy, and experimentally proved wrong by
    al-Hassan Ibn al-Haytham; 1637 – Descartes, particles; 1678 –
    Huygens, waves, that slow down in refraction; 1704 – Newton, particles that
    speed up in refraction (it was assumed that light waves would be longitudinal, and
    did not explain polarization); 1801 – Young, waves, from interference (and
    introduced idea of transverse waves); 1850 – Foucault, waves, from slowdown
    in refraction; 1905 – Planck/Einstein, photons; {# Grimaldi, Herschel}.
  @ General references, I: in Lightman 86, p137 ff;
    Sobel 87;
    Perkowitz ThSc(93)mar [beyond the blue];
    Lynch & Livingston 95;
    Silverman 98;
    García-Matos & Torner 15;
    Wiseman a1510-PS
      [fundamental features that distinguish laser light from thermal light].
  @ General references, II/III:
    Breslin & Montwill 13;
    Pathak & Ghatak a1705
      [rev, classical and non-classical, and applications].
  @ History: Zajonc 93;
    Perkowitz 96 [and art];
    Park 97;
    Shea AJP(98)jul [Rømer's experiment];
    Potter a0811 [Lorenz's model];
    Al-Khalili  bbc(09)jan [al-Hassan Ibn al-Haytham];
    Sparavigna IJS-a1302
      [reflection and refraction in Robert Grosseteste's treatise];
    Bermudez et al FMO(16)-a1506-proc;
    news APS(16)jul [Fresnel's work];
    Yajnik BIPA-a1905 [Sudarshan's diagonal representation];
    > s.a. history of physics [electromagnetism].
  @ Nature: Newton PTRS(1672),
    reprinted AJP(93)feb [colors];
    Young PTRS(1802) [wave theory];
    > s.a. spin models.
Classical Effects and Properties
  > s.a. aharonov-bohm effect; diffraction;
  interference; optics; phase;
  polarization; radiation.
  * Talbot effect: The repeated
    self-imaging of a diffraction grating, reported in 1836 by Henry Fox Talbot,
    rediscovered by Lord Rayleigh in 1881; Explained by near-field interference
    [@ news pw(01)jun].
  @ Orbital angular momentum:
    Allen et al PRA(92);
    Leach et al PRL(02);
    Padgett et al PT(04)may;
    Tiwari qp/06;
    Vitullo et al PRL(17)-a1607;
    > s.a. doppler effect.
  @ Related topics: NS(90)sep1, 40-44 [rainbows];
    Harris CP(95) [interference and fluctuations, speckle];
    Sanz & Miret-Artés JChemP(07)qp [Talbot effect in quantum mechanics, in terms of Bohmian mechanics];
    Götte et al PRS(07) [dragging by a rotating medium].
  > Related topics: see Caustics;
    Coherence; energy-momentum tensor;
    Rabi Model [coupling to matter]; Rainbow;
    thermodynamic systems [thermal light].
Anomalous Propagation > s.a. dispersion;
  photon; wave phenomena.
  * Scharnhorst effect:
    Superluminal propagation in matter obtained by suppressing vacuum modes
    (> see casimir effect).
  * Slowdown: 1997, 17 m/s
    in BEC; 2000, 1 mph in BEC; 2001, Light effectively slowed down to
    vg = 0, its information stored
    in collective spin states of a dilute Rb gas, with the possibility of reading
    it out later; However, most light packets lose their shape when their speed
    is decreased, which limits their applicability in  telecommunications; 2004,
    optical solitons made to move at 10−6 c.
  * Standstill: 2002, Achieved in crystals,
    can be useful for high-density information storage for quantum computing.
  @ Superluminal:
    Valentini PLA(89);
    news Nat(90)mar; Scharnhorst
    PLB(90);
    Barton PLB(90);
    Wang et al Nat(00)jul;
    Jackson et al PRA(01)phy/00;
    Shore gq/03-proc,
    NPB(07)ht [from quantum field theory effects];
    Chen et al PRA(08)-a0807 [control];
    Cialdi et al NJP(09)-a0904 [single photon];
    news(11)jul,
    sci(11)aug;
    Weinstein a1203 [discussion between Einstein and Wien];
    > s.a. Superluminal Propagation.
  @ Slowdown:
    Vestergaard Hau et al Nat(99)feb [17 m/s in BEC];
    Fiurasek et al PRA(02)qp/00;
    Phillips et al PRL(01)
    + pn(01)jan;
    news pn(07)may.
  @ Standstill, storage: Vestergaard Hau SA(01)jul;
    Bajcsy et al Nat(03)qp [pulses in Rb];
    Tanji et al PRL(09)
    + Laurat Phy(09)jul
      [and quantum information networks];
    Havey CP(09)
      [in ultracold and high-density atomic gases];
    de Riedmatten Phy(13),
    Heinze et al PRL(13)
    + news ns(13)jul [long-term storage];
    Wiersma Phy(15)jun [trapping in Lieb lattices];
    > s.a. photon.
  @ Accelerating beams:
    news pw(12)nov [light following curved trajectories in free space];
    Bekenstein et al PRX(14) [accelerating wave packets in curved space].
Other Propagation Effects
  > s.a. black-hole analogs [optical]; gravitational
  phenomenology; photon phenomenology; Reflection;
  refraction.
  * Speed: Notice that
    the invariance of the speed of light only applies to plane waves;
    Spatial structure in a beam can reduce the speed even in vacuum.
  @ Various materials:
    Neutze & Stedman PRA(98) [accelerating media];
    Ward CP(99) [photonic materials];
    Novello & Salim PRD(01) [non-linear dielectric, effective metric];
    Michinel et al PRE(02)
    + pn(02)jul ["light droplets"];
    Ramakrishna & Armour AJP(03)jun-cm/02 [absorbing media];
    Li & Sun CTP(06)qp/05 [3+1-level atoms];
    Garanovich et al PRP(12) [in modulated photonic lattices];
    Popoff et al PRL(14) [control of light transmission through disordered media].
  @ Inhomogeneous:
    Piwnicki IJMPA(02) [geometrical].
  @ Scattering:
    Lagendijk & van Tiggelen PRP(96) [multiple];
    Berman CP(08) [by atoms and vapors];
    Bini et al EPL(13)-a1408 [by radiation fields];
    Liu Phy(19) [superscattering, with metamaterial].
  @ Interaction with matter: Baragiola PhD-a1408;
    López Carreño & Laussy PRA(16)-a1601 [quantum light and harmonic oscillators].
  @ In curved spacetime: Batic et al PRD(15)-a1412 [deflection angle, lensing, bound states];
    Mannheim a2105 [light rays do not always follow null geodesics];
    > s.a. electromagnetism in curved spacetimes; lensing;
      matter and radiation near black holes; perturbed FLRW.
  @ Gravitational interactions: Faraoni & Dumse GRG(99)gq/98;
    Kopeikin & Korobkov in(14)gq/05 [propagation in the field of radiative gravitational multipoles];
    Vilasi et al CQG(11)-a1009 [with gravity as a wave and as a particle];
    Rätzel et al NJP(16)-a1511 [gravitational field of a laser  pulse].
  @ In cosmology:
    Ellis et al CQG(98) [lensing and caustic effects];
    Mustapha et al CQG(98) [distance-redshift];
    More et al ApJ(09)-a0810 [transparency];
    Räsänen JCAP(09)-a0812,
    JCAP(10)-a0912 [clumping and distance-redshift];
    Maziashvili PRD(12)-a1206 [stochastic background, and light incoherence rate];
    Fleury a1511-PhD [inhomogeneous and anisotropic cosmologies];
    > s.a. averaging in cosmology.
  @ Related topics: Punzi et al CQG(09)-a0711 [in area-metric background];
    Giovannini et al Sci(15)feb-a1411 [speed v < c in free space].
  > Gravity-related topics: see doubly
    special relativity; observational cosmology [birefringence];
    tests of general relativity with light.
Quantum Aspects
  > s.a. photons; QED.
  * History: The theoretical
    basis for the full quantum characterization of light was introduced by
    Glauber in 1963.
  * Description: As shown by
    Białynicki-Birula, optics also admits a hydrodynamical formulation
    in terms of photon trajectories when the existence of a wave function
    for photons is assumed, analogous to the pilot-wave description of the
    behavior of massive particles.
  @ General references: Glauber PR(63);
    Brańczyk et al JOSA(17)-a1605 [thermal light as a mixture of sets of pulses];
    Kedia et al a1706 [knotted states];
    Bradler et al a1810 [quantum states and graph isomorphism];
    Tsang CP(19)-a1906 [tackling the diffraction limit and photon shot noise].
  @ Coupling to matter: Sørensen & Sørensen PRA(08)-a0711,
    Hammerer et al RMP(10)-a0807 [ensemble of identical atoms];
    Picón et al NJP(10)-a1005 [and atoms, angular momentum exchange];
    De Liberato PRL(14)-a1308 [strong-coupling regime with matter];
    Lachman et al SRep-a1605 [from many independent emitters];
    Salasnich 17 [and matter];
    Obšil et al a1705 [from a large number of trapped ions];
    Zubizarreta et al LPR(20)-a1901 [photon statistics];
    Karnieli et al a2011
      [light emission and quantum electrodynamics].
  @ Non-classical nature: Steudle et al PRA(12)-a1107 [experiment];
    Dodel et al Quant(17)-a1611 [witnessing with the human eye].
  @ Degree of non-classicality: Mraz et al PRA(14);
    Kühn & Vogel PRA(14);
    Lee et al PRA(16)-a1606;
    > s.a. Coherence.
  > Specific aspects: see localization;
    photon phenomenology [including entanglement];
    quantum-gravity effects; radiation.
  > Related topics: see Chemical
    Potential; Hanbury Brown-Twiss Effect; quantum
    chaos; Solid Light; Superfluids;
    Wave-Particle Duality.
Applications > s.a. earth [atmospheric optics];
  optical technology [including lasers]; Spectroscopy.
  @ Colors: Weinberg GRG(76);
    Pease AJP(80)nov [RL];
    Rossotti 88; Perkowitz ThSc(91)may;
    Gage 93, 99;
    Nassau 01;
    Kentsis phy/05 [Goethe's theory];
    Sparavigna IJS(14)-a1212 [Robert Grosseteste on the nature of colors];
    Mota & Lopes dos Santos PhysEd(14) [additive and subtractive mixtures];
    Woolfson 16 [popularization].
  @ Art: Rossing & Chiaverina 99 [II, introductory physics for visual arts];
    Taft & Mayer 00 [painting].
  @ Other practical aspects:
    Woolfson 11 [imaging].
  > Online resources:
see lightsources.org website.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 18 may 2021