|  QED – Quantum Electrodynamics | 
In General
  > s.a. Electrodynamics; electromagnetism
  / QED phenomenology [including media and background fields].
  * Idea: The theory of
    the coupled, quantized Maxwell theory for the (vector) electromagnetic
    field coupled to (Dirac spinor) electron fields.
  * 1948: Schwinger solves
    the problems of renormalization in QED, followed by the work of Feynman
    and Tomonaga.
  * 1952: Dyson's arguments
    suggest that the perturbation series in quantum electrodynamics cannot be
    convergent but are asymptotic.
  * 1955: Landau's argument
    that the effective running coupling constant has a pole (Landau
    singularity) at some very high energy scale.
  * Status: It is the most
    accurate theory we have, and gives extremely precise predictions; However,
    because its perturbation series  diverge (they are asymptotic series) and
    of the Landau pole problem, it is considered as an effective low-energy
    theory, valid up to some cutoff energy.
Canonical Approach > s.a. fock space;
  geometric quantization; Wavelets.
  * Approaches: It
    can be carried out in a fixed gauge, or à la Dirac.
  @ General references:
    Dirac PR(65) [Heisenberg representation];
    Arthurs PLA(79) [in terms of E and B];
    Löffelholz et al JMP(03) [Gauss law and existence of propagator];
    Frolov a1403 [formulations];
    Blasone et al JPCS(18)-a1801 [and the emergence of gauge invariance].
  @ Loop representation: Ashtekar & Rovelli CQG(92);
    Ashtekar et al JGP(92) [self-dual representation];
    Brügmann LNP(04)gq/93;
    Leal MPLA(96)ht;
    Ashtekar  & Corichi CQG(97)gq/96;
    Corichi & Krasnov MPLA(98)ht/97;
    Varadarajan PRD(00)gq [Fock space];
    Carrión-Álvarez PhD(04)mp [unsmeared Wilson loops and Fock space];
    Leal MPLA(10)-a0910 [dual loop representation];
    > s.a. monopoles.
  @ Flux uncertainty relations: Ashtekar & Corichi PRD(97)ht;
    Freed et al CMP(07)ht/06,
    AP(07)ht/06.
  @ Special cases: Gambini et al PRD(98)ht/97 [2D compact, loop variables];
    Bojowald JMP(00)ht/99 [spherical symmetry, and abelian BF];
    Leal & López JMP(06)ht/04 [with magnetic monopole].
Covariant Approach
  * Lagrangian: This approach
    requires adding a gauge-fixing term to the Lagrangian,
\(\cal L\)G = −\(1\over2\)ζ−1 (Aa;a)\(^2\),
    with ζ a constant parameter (ζ = 1,
    Feynman gauge, which actually leads to the Lorenz gauge condition;
    ζ → 0, Landau gauge); The equation of motion becomes
    [ηab \(\square\)
    − (1−ζ−1)
    ∂a ∂b]
    Ab = 0 or, in the Feynman
    gauge; \(\square\) Aa = 0.
  * Interpretation: Problems with the
    number of degrees of freedom can be handled with the Gupta-Bleuler formalism.
  @ References:
    Schwinger PR(48),
    PR(49);
    Nambu PTP(50);
    Misra & Warawdekar PRD(05) [and light-front, 1-loop equivalence].
Other Approaches and Situations > s.a. quantum gauge theories;
  stochastic quantization; yang-mills theories.
  * Path integral: It can be done,
    but it introduces ghosts in the theory, because of gauge invariance.
  @ General references: Thirring & Narnhofer RVMP(92) [covariant without ghosts];
    Swanson FP(00) [canonical vs path integral];
    Burch JMP(04)qp/03 [histories];
    Arbatsky mp/04;
    Steinmann ht/04-conf
      [Gupta-Bleuler vs Coulomb gauge formulations];
    Yearchuck et al a0909;
    Ciolli et al RVMP(15)-a1305 [QED as a representation of the net of causal loops in Minkowski spacetime];
    Siringo PRD(14) [variational method];
    Bennett et al EJP-a1506 [physically motivated].
  @ Perturbative:
    Steinhauser PRP(02) [multi-loop];
    Dunne JHEP(04)ht/03 [2-loop, simplification];
    Azam ht/04,
    MPLA(06)hp/05 [series divergence],
    hp/06-wd [and Landau pole];
    Filippov qp/06-conf [new approach];
    Sakhnovich a1606,
    a1710 [new approach to the divergence problems].
  @ Non-perturbative: Rochev JPA(00);
    Ilderton a1901
      [on the string-field conjectured breakdown of  perturbation theory];
    > s.a. algebraic quantum field theory.
  @ Discretized, on a lattice:
    Armand-Ugón & Fort PLB(92) [phase transition];
    Kijowski & Thielmann JGP(96);
    Kijowski et al CMP(97) [observables and superselection];
    Ercolessi et al PRD(18)-a1705 [in 1+1 dimensions, simulation];
    > s.a. Discrete Models; regge calculus.
  @ Related topics: Czachor ht/02,
    & Syty qp/02 [non-canonical];
    Noltingk JMP(02)gq/01 [BRST quantization of histories electrodynamics];
    Manoukian & Viriyasrisuwattana IJTP(07) [photon propagation in spacetime];
    Karplyuk & Zhmudsky PRD(12)-a1206 [new method for calculating amplitudes].
  > Related topics:
    see feynman propagator; modified formulations [including curved spacetime];
    photon [propagator]; string phenomenology.
Theoretical Concepts and Effects > s.a. information theory;
  locality; modified electrodynamics; photons;
  renormalization of gauge theories; vacuum.
  @ States: Buchholz LNP(82) [state space];
    Alekseev & Perina PLA(97) [squeezing, chaos-assisted];
    > s.a. Squeezed States.
  @ Semiclassical: Sonego pr(91);
    Stewart JPA(00)-a1606 [not gauge invariant];
    Naudts & De Roeck IJTP(04)mp/03
      [with classical Aa];
    Polonyi PRD(06)ht [crossover field theory],
    PRD(08)-a0801;
    Ghose a1705
      [interpolating theory between quantum and classical electrodynamics];
    > s.a. quantum field theory states.
  @ At finite temperature: Elmfors & Skagerstam PLB(95)ht/94;
    Cervi et al PRD(01),
    Alfaro et al IJMPA(10)-a0904 [Lorentz and CPT violation];
    Andersen PRD(02) [low-T];
    Kazakov & Nikitin a0910, EPL(10) [vanishing effective electromagnetic field];
    > s.a. effective action.
  @ Radiation damping, decoherence:
    Breuer & Petruccione in(00)qp/02;
    > s.a. decoherence.
  @ Interpretations:
    Kaloyerou PRP(94) [causal field];
    Marshall qp/02 [classical];
    Bacelar a1201 [relationship with classical theory];
    > s.a. quantum field theory.
  @ Non-classical aspects: Klyshko PLA(96);
    Roy & Roy JPA(97);
    Paris PLA(01)qp;
    Li PLA(08) [photon-added thermal state].
  @ Gauge issues:
    Hojman AP(77) [true degrees of freedom in any gauge];
    Esposito PRD(97)ht/96 [conformally invariant gauge];
    Arnone et al JHEP(05)ht [manifestly gauge-invariant];
    Solomon qp/06 [negative energy states in temporal gauge],
    qp/07 [spacelike energy-momentum vector].
  @ Fluxes: Weigel JPA(06)ht [flux tubes];
    Rañada & Trueba FP(06) [topological quantization].
  @ Related topics: Crone & Sher AJP(91)jan [broken U(1)];
    Anastopoulos & Zoupas PRD(98)ht/97 [ρeff for spinors];
    Kondo PRD(98)ht [confining phase?];
    Ribarič & Šušteršič ht/00 [regularization];
    Bagan et al PLB(00)ht  [particle description];
    Buchholz et al AP(01) [charge delocalization];
    Lieb & Loss CMP(04)mp [polarization vectors];
    Bordag PRD(04)ht [and boundary conditions];
    Alexandre AP(04)
      [dynamical mass generation in QED3];
    Aragão et al PLA(04) [highly peaked phase distribution];
    Efimov TMP(04) [stability];
    Herdegen APPB(05)ht/04 [asymptotic structure];
    Ilderton NPB(06) [recurrence relations between amplitudes];
    Marsh a0809 [negative energies];
    Fry PRD(11) [stability];
    Naudts a1704-conf [emergence of  Coulomb forces].
  > Other effects:
    see correlations; duality;
    emergence; entanglement;
    geometric phase; Landau Pole;
    particles and photons in quantum gravity.
References > s.a. history of quantum physics;
  light; path integrals for field theory;
  quantum dirac fields; quantum field theory [including pilot-wave].
  @ General: Dirac et al PZS(32);
    Feynman PR(49),
    PR(50),
    PR(51),
    Sci(66)aug;
    Prokhorov SPU(88);
    de la Torre EJP(05).
  @ Texts, I: Feynman 85.
  @ Texts, III: Thirring 58;
    Feynman 61;
    Ahiezer & Beresteckii 65;
    Källén 72;
    Cohen-Tannoudji et al 92;
    Milonni 94;
    Gribov & Nyiri 00;
    Steinmann 00 [perturbative];
    Greiner & Reinhardt 02;
    Gingrich 06 [numerous exercises];
    Grozin 07;
    Zeidler 09;
    Aitchison & Hey 12.
  @ Sources, reprints: Schwinger ed-58;
    Miller 94.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 mar 2021