|  Geometric Phase | 
In General > s.a. holonomy.
  * Idea: The anholonomy
    observed when a system undergoes a cyclic transformation in some parameter
    space; It depends only on the geometry of the circuit in parameter space.
  * Geometrical analog:
    Parallel transport of a vector on a spherical surface.
References
  > s.a. connection; Parallel Transport.
  @ II: Berry SA(88)dec;
    Holstein AJP(89)dec;
    Berry PT(90)dec;
    Von Baeyer ThSc(90)may;
    Holstein CP(95).
  @ General:
    Wilczek & Zee PRL(84);
    Berry JPA(85);
    Hannay JPA(85);
    Anandan PRD(86);
    Anandan & Stodolsky PRD(87);
    Berry PRS(87);
    Gozzi & Thacker PRD(87),
    PRD(88);
    Li PRL(87);
    Stone & Goff pr(87);
    Anandan PLA(88),
    PRL(88);
    Anandan & Aharonov PRD(88);
    Jackiw CPAM(88),
    IJMPA(88);
    Samuel & Bhandari PRL(88);
    Giavarini et al PLA(89),
    JPA(89);
    Shapere & Wilczek ed-89;
    Aitchison & Wanelik PRS(92);
    Sudarshan et al PLA(92);
    Batterman SHPMP(03) [conceptual, and gauge];
    Aharonov et al JPCS(09)-a0907;
    Katanaev RPJ-a1212 [geometric interpretation].
  @ Textbooks / reviews: Rohrlich a0708-in;
    Garg AJP(10)jul
      [Berry curvature and Chern number, near degeneracies];
    in Chang & Ge 17;
    Cohen et al nRev(19)-a1912;
    in Dittrich & Reuter 20.
  @ Aharonov-Anandan phase: 
    Segre mp/05 [and Hannay's angle];
    Bracken IJQC(08)-mp/06 [geometrical];
    Giscard a0901/PRL [operator].
  @ Related topics: Montgomery CMP(88) [mathematical];
    Robbins & Berry PRS(92) [chaotic systems];
    Simon & Mukunda PRL(93) [applications];
    Anandan et al AJP(97)mar-qp [resource letter];
    Katanaev RPJ(11)-a0909 [geometrical];
    Zygelman PRA-a1205 [and forces, qubit model].
  @ Experiments: Bhandari & Samuel PRL(88),
    Chiao et al PRL(88),
    Suter et al PRL(88);
    Hariharan AJP(93)jul [simple optical demo];
    Price & Cooper PRA(12) [mapping the Berry curvature].
Classical (Hannay's angle)
  > s.a. duality [electromagnetic field]; Pendulum [Foucault].
  * Examples: Foucault's pendulum; Spins turning in a magnetic field.
  @ In mechanics: Spallicci et al Nonlin(05)ap/03 [3-body problem];
    Spallicci NCB(04)ap [satellite measurement];
    Gil AJP(10)apr [mechanical device];
    Bae et al Chaos(18)
    + Fitzgerald pt(18)aug [bead on a hoop experiment].
  @ In optics: Bhandari PRP(97) [polarization];
    Samuel & Sinha Pra-qp/97 [Thomas precession];
    Ghose & Samal qp/01 [gravity-induced].
  @ Scalar field in curved spacetime: Mostafazadeh ht/96,
    JPA(98)qp [charged Klein-Gordon field].
Quantum (Berry phase)
  > s.a. entanglement; quantum systems
  [non-trivial topology]; realism; Thomas
  Precession; wigner function.
  * Idea: The holonomy
    around a closed loop c in the projective Hilbert space P
    with respect to the natural connection given by the inner product, or the
    area enclosed by c with respect to the natural symplectic structure
    on P; It can be expressed as the integral of the symplectic form
    of the Fubini-Study geometry over a surface S spanning c,
    i \(\int_S \langle\psi | {\rm d}\psi\rangle\).
  * Relationships: It
    generalizes the Aharonov-Bohm effect to loops in abstract parameter space;
    > s.a. formulations of quantum theory.
  @ General references: Simon PRL(83);
    Berry PRS(84);
    Page PRA(87);
    Herdegen PLA(89);
    Anandan PLA(90) [cyclic motions, and state space metric];
    Pati PLA(91);
    Stanley PLA(91);
    Mukunda & Simon AP(93),
    AP(93);
    Bohm et al 03;
    Cabrera a0705 [geometric features];
    Filipp et al PRL(09) [experimental test of robustness];
    Vutha & DeMille a0907/AJP [without geometry];
    Ben-Aryeh a0909;
    Dennis et al ed-JPA(10) [25 years];
    Capolupo & Vitiello NCC(15)-a1512 [applications, CPT violation, Unruh effect and temperature];
    Moore a1706 [non-uniqueness of the Berry connection].
  @ Generalizations:
    Kapustin & Spodyneiko a2001 [higher-dimensional];
    Hsin et al a2004 [quantum field theory].
Specific Types of Systems
  > s.a. magnetism [momentum-space magnetic field]; phase transitions;
  quantum computing; semiclassical evolution.
  * Open systems: The geometric phase
    should be described by a distribution; This distribution is in general ambiguous,
    but the imposition of reasonable physical constraints on the environment and its
    coupling with the system  yields a unique geometric phase distribution.
  * Examples: Aharonov-Bohm
    and Aharonov-Casher effects, rotating SQUIDs, neutron interferometry.
  @ Open systems: Carollo et al PRL(03)qp,
    MPLA(05);
    Marzlin et al PRL(04) [distributions];
    Burić & Radonjić PRA(09);
    Hu & Yu PRA(12) [accelerated two-level atom, and Unruh effect].
  @ And gravity: Anandan PLA(94),
    gq/95;
    Corichi & Pierri PRD(95)gq/94 [Klein-Gordon particle around cosmic string];
    Casadio & Venturi CQG(95);
    Ho & Morgan PLA(97) [particle in Newtonian potential];
    de Assis et al gq/03 [around rotating massive body];
    Freedman a0812-conf [quantum gravity model];
    Papini PLA(12)-a1202 [gravitational Berry phase and Zitterbewegung];
    Mukhopadhyay & Ganguly a1802 [spinors and  neutrinos, gravitational Zeeman effect].
  @ Other field theories:
    Martinez PRD(90) [gauge theory + fermion];
    Carollo et al PRA(03)qp/02 [cavity QED];
    Baggio et al a1701.
  @ Relativistic: Wang & Li PRA(99).
  @ Spin: Hannay JPA(98) [spin-j];
    Fuentes-Guridi et al PRL(02)qp  [spin-1/2, B];
    Carollo et al PRL(04)qp/03 [spin-1/2, decohering quantum fields];
    Pachos & Carollo PTRS(06)qp [and criticality];
    Filipp et al PRL(09)-a0812 [spin-1/2 particle, robustness, experimental];
    Niu et al PRA(10)-a1003 [interacting bipartite system];
    Muminov & Yousefi a1103 [for coherent states];
    Jafari PLA(13) [spin chains, quantum renormalization-group approach];
    Aguilar et al MPLA(16)-a1609 [coupled to a quantum vector operator].
  @ Other types of systems:
    Solem & Biederharn FP(93);
    Giller et al PLA(94) [and degeneracies of Hamiltonian];
    Strahov JMP(01) [compact Lie groups];
    Dreisigmeyer et al FPL(03)qp/01 [spinors];
    Bertlmann et al PRA(04) [entangled neutrons];
    Sinitsyn & Saxena JPA(08) [non-Hermitian Hamiltonian];
    Kaufherr et al a0907-wd [1D scattering of heavy + light particle];
    Sjöqvist PLA(10) [composite systems, from correlations];
    Xiao et al RMP(10) [electrons in solids];
    Du et al PRA(11),
    a1301 [non-Abelian geometric phase with 3-level atomic system];
    Mousolou & Sjöqvist PRA(14) [coupled quantum bits];
    Zhang et al a1410 [single solid-state spin qubit];
    Do et al a1903 [Bose-Einstein condensate];
    Yang et al a1904 [simple system, interpretation];
    > s.a. neutrino oscillations; neutron;
      spin models; quantum computation.
Other References > s.a. coherent states;
  Commutation Relations; generalized
  particle statistics; spin-statistics theorem.
  @ Non-adiabatic:
    Aharonov & Anandan PRL(87);
    Anandan AIHP(88),
    PLA(88),
    & Aharonov PRD(88).
  @ Non-cyclic evolutions:
    García de Polavieja & Sjöqvist AJP(98)may-qp;
    Pati AP(98)qp.
  @ Arbitrary quantum evolutions:
    Anandan & Aharonov PRL(90);
    Gosselin & Mohrbach JPA(10)-a1008 [beyond the adiabatic regime].
  @ Mixed states: & Uhlmann;
    Dittmann LMP(98) [connection];
    Sjöqvist et al PRL(00);
    Ercolessi et al IJMPA(01)qp [multilevel quantum systems];
    Slater LMP(02)mp/01;
    Ericsson et al PRL(03)qp/02;
    Filipp & Sjöqvist PRL(03)qp/02 [off-diagonal];
    Du et al PRL(03) [observation];
    Chaturvedi et al EPJC(04)qp/03 [geometric approach];
    Ericsson et al PRL(05)qp/04  [measurement];
    Rezakhani & Zanardi PRA(06)qp/05 [general setting],
    PRA(06) [T effects];
    Fujikawa AP(07) [hidden local gauge symmetry];
    Andersson & Heydari NJP(13)-a1302,
    JPA(15)-a1411;
    Sjöqvist IJQC(15)-a1503 [and quantum information, computation, and entangled systems];
    Andersson et al PTRS(16)-a1507 [Kitaev chain, Uhlmann's geometric phase];
    Sjöqvist a1909 [geometry].
  @ And quantum Zeno effect: Facchi et al PLA(99)qp.
  @ Geometric vs dynamical: Anastopoulos & Savvidou IJTP(02)qp/00 [and consistent histories].
  @ Classical vs quantum: Giavarini et al PRD(89);
    Giller et al PLA(93);
    Biswas et al IJMPA(94).
  @ Relationships: Rabei et al PRA(99)qp [and Bargmann invariants];
    Zeng & Lei PLA(96) [Lewis phase];
    Viennot et al JPA(06) [and time-dependent wave operators].
  @ In interferometry: Bhandari & Samuel PRL(88) [Pancharatnam phase, using laser polarization];
    Sjöqvist et al PRL(06).
  @ And measurement: Pati & Lawande PLA(96),
    qp/98/PRL;
    Sjöqvist & Carlsen PRA(97) [pilot-wave theory];
    Banks et al PRX(17) [condensed matter].
  @ Related topics: Newton PRL(94) [and S-matrix];
    Pati PLA(95) [projective Hilbert space];
    Sjöqvist et al PLA(97) [Galilean non-invariance];
    Martinez JPA(06) [role of space symmetries];
    Horsley & Babiker PRL(07) [effect of time average and statistical variance of electromagnetic quantity];
    Low JPCS(12)-a0903 [relativistic implications];
    Chou & Wyatt AP(10) [in Bohmian mechanics];
    Garcia-Chung a2004 [n-partite Gaussian states];
    > s.a. topology in physics [topological quantum phase].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 sep 2020