|  Stress-Energy or Energy-Momentum Tensors | 
In General > s.a. conservation laws;
  history of relativistic physics.
  * Idea: A tensor field
    whose components give the energy density, momentum density, pressure and stresses
    of a field; For example, the total 4-momentum of the field configuration is
    Pm = ∫Σ
    Tmn dSn;
    Usually defined up to the addition of a curl, but it is fixed in general relativity.
  $ Canonical energy-momentum
    tensor: For a matter field with Lagrangian density \(\cal L\),
θmn(φ, ∂φ):= {∂\(\cal L\)/∂(∂mφ)} ∂n φ − δmn \(\cal L\)(φ, ∂φ) .
  * Remark: Used in Minkowski spacetime;
    For some fields, like the Klein-Gordon field, it agrees with the stress-energy tensor,
    but more generally it may not be symmetric or gauge-invariant, and may not even be
    conserved in curved spacetime.
  $ Stress-energy tensor: For
    a matter field with action SM,
Tab:= −(αM / 8π) |g|−1/2 δSM / δgab .
  * Restrictions: It must be conserved, i.e.,
    satisfy ∇mT mn
    = 0; It is usually thought to be desirable for the stress-energy tensor to satisfy some positive-energy condition,
    although we know that all of these conditions can be violated.
  @ General references: Goldberg PR(58);
    Sorkin GRG(77);
    in Wald 84;
    Hall & Negm IJTP(86);
    Magnano & Sokołowski CQG(02)gq/01 [symmetries];
    Gamboa Saraví JPA(04)mp/03 [canonical vs metric vs Belinfante];
    Forger & Römer AP(04)ht/03 [rev+];
    Pons JMP(11)
      [Belinfante vs Hilbert, and conformal symmetry];
    Lehmkuhl BJPS(11) [conceptual];
    Voicu IJGMP(16)-a1511 [general geometric approach];
    Lei et al a1903 [new form];
    Baker et al NPB-a2011 [derivation methods].
  @ And gravity: Leclerc IJMPD(06)gq/05;
    Dupré a0903 [covariant expression];
    Curiel a0908 [non-existence];
    Ohanian a1010
      [canonical energy-momentum tensor vs gravitational-field source in Einstein's equation];
    Chen a1211 [inertial vs gravitational energy-momentum tensors?];
    Novello & Bittencourt a1311 [in the Geometric Scalar theory];
    Nikolić a1407
      [the Einstein tensor as gravitational energy-momentum tensor];
    Bamba & Shimizu IJGMP(16)-a1506 [from the Noether theorem];
    Padmanabhan GRG(15)-a1506 [momentum density of spacetime];
    Shimizu MPLA(16)-a1601 [from Noether's theorem];
    Acquaviva et al CQG(08)-a1802 [square root of the Bel-Robinson tensor];
    Curiel SHPMP(19)-a1808 [there can be no such tensor];
    Dupré a2012 [Jacobi curvature tensor].
Relativistic Particles
  * In Minkowski space: For a
    particle of mass m and velocity v along the x-axis,
Tab(x) = m (1−v2)−1/2 δ(x−vt) δ(y) δ(z) sisk , si:= δi0 + v δi1 .
@ References: de Souza JPA(97)ht/96 [self-field issues]; Blanchet & Faye JMP(01)gq/00 [regularization in pN expansions of general relativity]; Lechner & Marchetti AP(07) [N charged point-particles]; Gratus et al a2005 [quadrupole].
For Fields
  > s.a. gravitational energy-momentum; metric matching
  [matter shell]; Stress; stress-energy pseudotensor.
  * Minimally coupled Klein-Gordon
field: [@ Wald 84, pp 63+70]
Tab = ∇aφ ∇bφ − \(1\over2\)gab (∇cφ ∇cφ + m2 φ2) .
* Electromagnetic field: [@ Geroch ln(gr), p47; Hawking & Ellis 73, p68; Wald 84, pp64+70]
Tab = \(1\over4\pi\)(Fac Fbc − \(1\over4\)gab Fde Fde) ;
    Its components are T 00
    = energy density, T 0i
    = Poynting vector, T ij
    = Maxwell stress tensor; (Notice that both the Abraham form–kinetic
    momentum, related to particle properties–and the Minkowski form–canonical
    momentum, related to wave properties–of the momentum density
    are correct, but they do not coincide inside a medium).
  * Perfect fluid:
    [@ Geroch ln(gr), p38;
    Hawking & Ellis 73, 69-70;
    Wald 84, pp62+69]
    If ρ = energy density, and p = pressure,
Tab = ρ ua ub + p (gab + uaub) = (ρ+p) ua ub + p gab .
* Imperfect fluid: [@ Coley PLA(89), > s.a. fluids] If ζ ≥ 0 is the coefficient of bulk viscosity, θ the expansion, σ the shear, η ≥ 0 the coefficient of shear viscosity, and q the heat conduction vector (q · u = 0),
Tab = ρ ua ub + (p − 2ζθ) (gab + ua ub) − 2η σab − qa ub + ua qb .
  @ Electromagnetic:
    Accioly AJP(97)sep [from field equations];
    Carminati & Zakhary CQG(99) [+ fluid, Segre classification];
    Gamboa Saraví JPA(02)mp;
    Montesinos & Flores RMF(06)mp [+ Yang-Mills + Proca, from Noether's theorem];
    Navarro & Sancho AIP(09)-a1101 [characterization];
    > s.a. Momentum; self-force.
  @ Electromagnetic, in media:
    Antoci & Mihich NCB(97)gq [Abraham tensor];
    Pfeifer et al RMP(07) [electromagnetic wave in a dielectric];
    Ravndal a0805;
    Barnett PRL(10)
    + news pw(10)mar [resolution of Abraham-Minkowski dilemma];
    Philbin PRA(11)-a1008 [dispersive media];
    Jiménez et al EJP(11) [magnetic media];
    Ramos et al PLA(11)
      [and dielectric "Einstein box" thought experiment];
    Medina & Stephany a1703 [resolution of the Abraham-Minkowski controversy];
    > s.a. electromagnetism in matter [Abraham and Minkowski tensors].
  @ Gauge theories: Sardanashvily ht/02-conf;
    Deser ht/04-conf [higher-spin gauge fields];
    Blaschke et al NPB(16)-a1605.
  @ Spinors: Carlson et al PRL(03) [massless spin-1/2 around static black hole];
    Zhang CTP(05)mp/04
      [equivalence of Belinfante's and metric Tab].
  @ Conservation laws:
    Sardanashvily gq/94 [Hamiltonian];
    Mensky PLA(04) [covariant];
    Deser FP(05) [and equations of motion];
    Koivisto CQG(06) [in modified gravity];
    Obukhov & Rubilar PRD(06)gq [3-form, in tetrad gravity];
    Mann et al CQG(08)-a0804 [for asymptotically flat spacetimes];
    Giulini IJGMP(18)-a1808 [integrability and global conserved quantities].
  @ In quantum field theory, renormalized:
    Cannella & Sturani GRG(10)-a0808 [via effective field theory];
    Barceló et al PRD(12)-a1112 [equivalence of two procedures];
    > s.a. quantum field theory in curved backgrounds.
  @ Other fields and topics: Deser & Jackiw IJMPB(96)ht/95 [2D scalar field, and conformal anomaly];
    Muñoz AJP(96)sep [and Poincaré invariance];
    Percus JMP(96) [non-local];
    Magnano & Sokołowski GRG(98)gq [from field equations];
    Gerhold et al ht/00 [scalar in non-commutative geometry];
    Saharian PRD(04)ht/03 [boundary terms];
    Giulini a1502-in [for extended objects, in special relativity];
    Mukherjee et al MPLA(18)-a1609 [for gravitationally-coupled theories];
    Ilin & Paston a1807 [higher-derivative tensor fields];
    > s.a. momentum [pressure contribution, for fluids].
In Quantum Theories > s.a. quantum field theory effects;
  semiclassical general relativity.
  * Applications: In quantum field
    theory in curved spacetimes, the vacuum expectation value of the stress-energy
    tensor is important in order to assess the importance of back-reaction effects,
    and as a better probe of the physical situation than a particle count.
  * Properties: This expectation value
    can be conserved even with particle creation, if we violate the dominant energy condition.
  @ General references: Hawking CMP(70);
    Zel'dovich & Pitaevski CMP(71);
    Roman PRD(86) [and weak energy condition];
    Moretti CMP(03)gq/01.
  @ Fluctuations: Borgman & Ford PRD(04)gq [with compact extra dimensions];
    Ford & Wu AIP(08)-a0710 [physical effects];
    Wu et al a2104 [spacetime average].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 apr 2021