|  Electromagnetism in Curved Spacetime | 
In General > s.a. astrophysics;
  black-hole and gravitational phenomenology.
  * Remark: In flat spacetime, the Coulomb law
    implies the Gauss law, but the latter is the one that generalizes to curved spacetime.
  @ General references:
    Cohen & Kegeles PRD(74);
    Bini et al IJMPD(01)gq/00 [integral formulation];
    Araujo Diniz et al ht/00;
    Tsagas CQG(05)gq/04;
    Sundkvist JMP(06) [covariant parametrization];
    Mitskievich a0802 [classification of fields];
    Notte-Cuello et al RPMP(08) [effective geometry];
    Subramanian AN(10)-a0911 [early universe, rev];
    Smolić CQG(14)-a1404 [spacetimes with symmetries];
    Cabral & Lobo FP(16)-a1602 [and spacetime geometry];
    Côté et al GRG(19)-a1905 [conformal invariance];
    Mavrogiannis & Tsagas a2104
      [in terms of potentials, with imperfect fluid, and cosmology].
  @ Electric and magnetic fields: Ellis in(73);
    Crater AJP(94)oct,
    comment Vanzella et al AJP(96)aug;
    Mabin et al TPT(17) [phenomenology].
  @ Asymptotics: Goldberg & Kerr JMP(64) [multipoles];
    Alexander  & Bergmann FP(84);
    Nolan AP(95) [NP];
    Misner et al PRD(06) [numerical, beyond scri];
    > s.a. spatial infinity [asymptotic symmetries].
  @ Electric-magnetic duality: Deser et al PRD(97)ht/96 [black holes];
    Cardoso et al PLB(96)ht [action for electric/magnetic currents].
  @ Complex techniques: Kaiser JPA(04)gq/01 [Kerr-Newman fields];
    Gsponer gq/04 [Lanczos-Newman electrodynamics].
  > Related topics:
    see Geometrization; green functions;
    light [propagation]; polarization;
    wave phenomena.
Specific Types of Spacetimes > s.a. FLRW models;
  huygens' principle; null infinity.
  @ Kerr black holes: Mukhopadhyay CQG(02)gq;
    Fernandes & Lahiri EPJC(19)-a1803;
    Grant & Flanagan CQG(20)-a1910 [conserved currents].
  @ Other black holes: Harpaz FP(07) [electric field in Schwarzschild spacetime];
    Valiente Kroon a0802 [near infinity];
    > s.a. black-hole phenomenology; fields in 
     schwarzschild space; generalized reissner-nordström spacetimes.
  @ de Sitter spacetime:
    Otchik & Red'kov pr(86)-a1001 [waves];
    Tsaregorodtsev & Medvedev G&C(98)gq [charged particle];
    Cotăescu & Crucean PTP(10)-a0806;
    Bini et al GRG(10) [exact solution];
    Veko et al NPCS-a1410.
  @ Other cosmological models: Hu & Shiokawa PRD(98)gq/97 [FLRW + stochastic];
    Montani & Cherubini IJMPD(05) [isotropic universe];
    Fleury et al PRD(15)-a1410 [homogeneous, anisotropic Bianchi I universe].
  @ Other spacetimes: Tomaschitz JMP(93) [multiply connected];
    Perez Bergliaffa & Hibberd PRD(00)gq [wormholes];
    Sakai & Shibata ApJ(03)ap/02 [and pulsars];
    Alvarez & Olive CMP(06)ht/03 [manifolds with boundary];
    Nouri-Zonoz CQG(04) [NUT space];
    Padmanabhan & Padmanabhan GRG(10)-a0910 [Rindler space, as model for weak gravitational field];
    Kassandrov G&C(11)-a1105 [Kerr-Schild spacetimes];
    Asenjo & Hojman CQG(17)-a1608 [when waves do not propagate along null geodesics].
  @ In higher dimensions: Mitskievich a0707-MG11;
    Dalmazi & Santos PRD(11)-a1105;
    Delphenich a1812 [5D];
    Henneaux & Troessaert PRD(19)-a1903.
  @ Generalized backgrounds: Wise CQG(06) [on a chain complex];
    Tarasov MPLA(06)-a0711 [on a fractal];
Harikumar EPL(10)-a1002 [on κ-Minkowski spacetime, and duality].
Coupling to Gravity > s.a. lorentzian geometry [analog];
  gravitating matter; unified theories.
  * Motivation: Improved
    experimental tests of general relativity, including electromagnetic fields
    around black holes, and alternatives theories.
  * Idea: The Maxwell equations
    in terms of (E, B) and (D, H) do not require
    a metric or connection, but the constitutive relationships between those two pairs
    do; The coupling to gravity may be non-minimal, and in particular it may require
    non-metricity and/or torsion.
  @ General references: Bergmann et al PR(50) [with Einstein's general relativity];
    Barut et al HPA(94) [and spacetime models];
    & Toupin & Schoenberg; Senovilla gq/03-proc [conserved tensor];
    Rosquist CQG(06)gq/04 [Compton scale effects];
    Hehl & Obukhov GRG(08) [and the equivalence principle];
    Füzfa PRD(16)-a1504
    + news IBT(16)jan [artificial gravitational fields];
    Vollick PRD(16)-a1612 [from modified Palatini action].
  @ 3D: Barnich et al CQG(15)-a1503 [asymptotically flat];
    Pérez et al JHEP(16)-a1512 [AdS spacetime, asymptotic structure].
  @ Special situations: Shatskiy JETP(01)gq/02 [field of a ring current around a Kerr black hole];
    Gürlebeck et al PRD(11) [layers of electric and magnetic monopoles and dipoles];
    Vancea a1708 [field line solutions];
    > s.a. gravitational waves; solutions of general relativity.
  @ Non-minimal: Prasanna & Mohanty CQG(03) [constraints];
    Balakin & Lemos CQG(05)gq;
    Annulli et al PRD(19)-a1901 [non-perturbative astrophysical effects].
  @ With non-metricity and torsion: Vandyck JPA(96);
    Hehl & Obukhov LNP(01)gq/00.
  @ In quantum spacetime: Lewandowski et al PRD(17)-a1709 [emergence of rainbow metric];
    > s.a. non-commutative spacetime;
      photons in quantum gravity.
Phenomenology and Related Topics > s.a. electricity;
  modified electrodynamics [pre-metric]; self-dual fields.
  @ General references: Cabral & Lobo EPJP(17)-a1603 [astrophysical applications];
    Bunney & Gradoni a1912 [doppler and gravitational redshifts].
  @ Gravitomagnetic effects: Nouri-Zonoz PRD(99)gq [Faraday rotation];
    Kopeikin & Mashhoon PRD(02)gq/01.
  @ Optical geometry: Sonego & Abramowicz JMP(98);
    Abramowicz & Sonego 04;
    Bittencourt et al CQG(16)-a1510 [importance and flexibility];
    > s.a. optics; self-force.
  @ Negative refraction:
    Lakhtakia et al PLA(05).
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 18 apr 2021