|  Scattering and Collisions | 
Scattering in General > s.a. diffraction [in field
  theory]; huygens' principle; resonance.
  * Geometric collisions:
    For particles of diameter d, mean speed v and
    number density n, the mean free path is l
    = (√2π
    d2n)−1,
    and the collision frequency f = v/l
    = √2π
    d2vn;
    The mean free time is of course t = 1/f ;
    > s.a. brownian motion.
  * Optical theorem: (a.k.a. optical
    cross-section theorem) The total cross section for an elastic scattering and
    absorption process (the potential can possibly be complex) is
σtot = (4π/k) Im f(k, k) ;
    The result is often credited to N Bohr, R Peierls and G Placzek,
    but it is actually due to E Feenberg and Lord Rayleigh.
  @ Geometric collisions: Jakoby EJP(09)
      [relaxation time, mean free path, and electronic conductivity];
    Palk AJP(14)jun
      [mean free path as statistical mean of the distribution of free path lengths].
  @ Optical theorem: in Schiff 68;
    Newton AJP(76)jul;
    Bussey PLA(86) [and wave-function collapse];
    Mansuripur AJP(12)apr [new perspective].
  @ Techniques: Barlette et al AJP(01)sep [integral equations, partial waves];
    Liu et al JHEP(14)-a1403 [without large-distance asymptotics].
Special Cases and Applications
  * Important experiments:
    Thomson scattering; Rutherford scattering; Deep inelastic scattering,
    that showed the composite nature of baryons.
  * Deep inelastic scattering:
    High-energy scattering of electrons off nucleons; Provides direct evidence for
    the existence of quarks inside the proton; Parameters are x = fraction of
    nuclear momentum carried by q, Q2
    = square of momentum transfer between nucleon and beam particle;
    > s.a. critical phenomena.
  @ Coulomb potential:
    Yafaev JPA(97) [n-dimensional, quantum];
    Ahmed qp/03 [quantum];
    Mineev TMP(04) [1D, self-adjoint extension];
    Glöckle et al PRC(09) [screening and renormalization factor];
    Neilson & Senatore ed JPA(09)#21;
    Abramovici & Avishai JPA(09) [1D];
    Collas a2102 [Born approximation, pedagogical].
  @ Gravitational, relativistic:
    Barrabès & Hogan CQG(04);
    Barbieri & Guadagnini NPB(05)gq [massless particles off rotating bodies];
    Nikishov a0807 [classical and quantum];
    Betti a1411-th [transplackian scattering];
    > s.a. motion of gravitating bodies.
  @ Bounded / point obstacle: Athanasiadis et al JMP(02) [acoustic and electromagnetic waves].
  @ Off defects: Katanaev & Volovich AP(99);
    Spinelly et al CQG(01) [conical, cosmic string].
  > Specific processes: see Bhabha Scattering;
    Drell-Yan Process;  neutron;
    Preons; Rutherford, Superradiant,
    Thomas, Thomson Scattering.
  > Specific theories:
    see atomic physics; dirac fields;
    graviton; molecular physics;
    photon phenomenology; pilot-wave
    quantum mechanics; wave phenomena.
Multiple Scattering > s.a. Debye Length;
  light; Rayleigh Scattering.
  @ General references:
    Huang PLA(04) [perturbative];
    Ramm mp/06,
    PLA(07)mp/06,
    JPA(08) [off many small bodies],
    PLA(07),
    PLA(08) [waves off many particles];
    Ramm & Rona a0910;
    Ramm RPMP(13) [transmission boundary conditions].
  @ Random scatterers: Mathur & Yeh JMP(64) [finite size, electromagnetic waves];
    Külske mp/01,
    Dean et al JPA(04) [point scatterers];
    Field 09;
    Basile et al a1307 [diffusion limit];
    Ramm JMP(14)-a1402 [electromagnetic wave scattering by small perfectly conducting particles].
In Quantum Theory
  > s.a. quantum mechanical tunneling [delay time]; S-Matrix.
  * Levinson's theorem: A fundamental
    theorem in quantum scattering theory, which shows the relation between the number of
    bound states and the phase shift at zero momentum for the Schrödinger equation.
  * Scattering amplitudes in quantum field
    theory: They can be expressed using a path integral over all possible classical
    field configurations, or starting from first principles and using recursion relations.
  @ General references:
    Amrein qp/01 [large-time behavior];
    Ignatovich qp/04 [problems?];
    Cannata et al AP(07) [PT-symmetric quantum mechanics, 1D];
    Hussein et al JPA(08)-a0807 [new formulation];
    Norsen a0910;
    Carron & Rosenfelder NJP(10)-a0912 [path-integral description];
    Karlovets a1710-conf [beyond the plane-wave approximation];
    Sakhnovich a1905
      [scattering operator, scattering amplitude and ergodic property];
    > s.a. quantum systems.
  @ Levinson's theorem: Wellner AJP(64)oct;
    Lin PRA(97)qp/98,
    PRA(98)qp/98 [2D];
    Rosu NCB(99)gq/97 [in quantum cosmology];
    Dong & Ma IJTP(00) [1D Schrödinger equation];
    Sheka et al PRA(03)qp/02;
    Boya & Casahorrán IJTP(07)qp/05-conf [from spectral density];
    Kellendonk & Richard qp/05,
    JPA(08)-a0712 [topological version];
    Ma JPA(06) [rev];
    Jia et al a1007
      [for potentials with critical decay 1/r 2];
    Kellendonk & Richard a1009;
    Childs & Strouse JMP(11)-a1103,
    Childs & Gosset JMP(12) [for scattering on a graph];
    Nicoleau et al JMP(17)-a1611 [extended version for systems with complex eigenvalues];
    > s.a. topology in physics.
  @ Semiclassical:
    Ford & Wheeler AP(00);
    Rothstein JMP(04) [1D and 2D];
    Berera NPA(07)ht [scattering of large objects in quantum field theory and classical description];
    Adhikari & Hussain AJP(08)dec [2D].
  @ In quantum field theory:
    Buchholz & Summers mp/05-en;
    Biswas a0807 [alternative approach];
    Toth CEJP(12)-a0904 [definition of scattering states];
    Rubtsov et al PRD(12)-a1204 [Lorentz-violating theories];
    Arkani-Hamed et al 16 [Grassmannian geometry];
    Taylor PRP(17)-a1703 [gauge theories];
    > s.a. bogoliubov transformations.
  @ Recursion relations for scattering amplitudes:
    Cheung et al PRL(16)
    + Kosower Phy(16) [effective field theories].
  @ Electron scattering:
    Tyutin pr(74)-a0801 [by solenoid];
    Dybalski NPB(17)-a1706 [non-perturbative description of colliding electrons].
  @ Yang-Mills theory scattering amplitudes:
    Britto et al PRL(05);
    Bjerrum-Bohr NPB(16)-a1605 [analytic expressions].
  @ Other types of situations: Mostafazadeh PRA(96) [on curved surfaces];
    de la Torre AJP(97)feb [wave packet in a central potential, distorsion];
    Esposito JPA(98)ht [singular potentials];
    Pérez Prieto et al JPA(03) [Gaussian wave function and square barrier];
    Roux & Yafaev JMP(03),
    Duch a1906 [long-range Vs];
    Oeckl a2105 [evanescent massive Klein-Gordon particles].
References > s.a. Inverse Scattering;
  Perturbation Methods; special potentials.
  @ General: Reed & Simon 79;
    Ramm in(80)mp/00 [scalar + vector waves, arbitrary shapes].
  @ Relativistic: Aichelburg et al CQG(04)gq/03 [ultrarelativistic charges].
  @ In curved spaces: Beig APA(82) [scalar fields, Schwarzschild spacetime];
    Ito & Skibsted a1109
      [on non-compact, connected, complete Riemannian manifolds].
  @ In non-commutative theories: Alavi MPLA(05)ht/04,
    Bellucci & Yeranyan PLB(05)ht/04 [quantum];
    Kumar & Rajaraman PRD(06)ht/05.
  @ Bohm-Gadella theory controversy: de la Madrid JPA(06)qp;
    Gadella & Wickramasekara JPA(07);
    de la Madrid JPA(07)-a0704;
    Baumgärtel a0704;
    de la Madrid a0705.
  @ Related topics:
    Fabbrichesi et al NPB(94) [Planck energies];
    Visser & Wolf PLA(97) [with field discontinuities];
    Laura IJTP(97)qp/99;
    de Vries et al RMP(98) [waves, point scatterer];
    Horan et al JMP(00) [weak convergence];
    Albeverio & Gottschalk CMP(01)mp/05,
    mp/05 [with indefinite metric];
    Stetsko a0912 [in spaces with minimal length];
    Sassoli de Bianchi CEJP(12)-a1010 [time delay, introduction];
    > s.a. Lennard-Jones Potential [scattering length].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 may 2021