|  Optics | 
In General > s.a. Geometrical Optics.
  * Development: 1980s,
    New interest in non-linear optics from gravitational lensing; 1998, First
    results in relativistic non-linear optics, with electrons accelerated and
    scattered by high power lasers ("non-linear Thomson scattering")
    moving in looping motions and emitting harmonics of the laser light
    [@ Chen et al Nat(98)dec
    + pn(98)dec].
  * Approaches: Light
    propagation is a wave phenomenon and its exact treatment is in terms of
    solutions of the wave equations for the electric and magnetic fields obtained
    from the Maxwell equations in a medium, or by the quantized electromagnetic
    field; However, in the small-wavelength approximation, it can be effectively
    described by geometrical optics (or ray optics).
  @ Reviews, status: news pw(01)sep;
    Pathak & Ghatak a1705 [classical and non-classical, and applications].
  @ Texts: Rossi 57;
    Welford 91 [applications, instruments];
    Born & Wolf 99;
    Hecht 02 [IIb];
    Brooker 03;
    Siciliano 06 [IIb, problems];
    Dereniak & Dereniak 08 [r CP(10)];
    Kenyon 11;
    Pedrotti 3 17.
  @ Non-linear: issue PT(94)may;
    Mills 98 [r PT(99)sep];
    Garmire AJP(11)mar [RL];
    New PRS(11) [the first 50 years];
    New 11 [intro];
    Powers 11
      [intro, r PT(12)oct];
    Kuzyk et al PRP(13) [sum rules and scaling];
    Picozzi et al PRP(14) [statistical, non-equilibrium thermodynamics formulation];
    Drummond & Hillery 14 [quantum];
    > s.a. Lasers.
  @ Other modified frameworks: Makris et al PRL(08) [in non-Hermitian, PT-symmetric potential].
 Related areas: see atomic physics;
  history of physics; physics teaching;
  solid matter [optical properties]; light;
  mirrors and optical technology.
 Related areas: see atomic physics;
  history of physics; physics teaching;
  solid matter [optical properties]; light;
  mirrors and optical technology.
 Wave-related effects: see diffraction;
  dispersion; interference;
  polarization [birefringence, dichroism, optical activity].
 Wave-related effects: see diffraction;
  dispersion; interference;
  polarization [birefringence, dichroism, optical activity].
Effects and Related Topics
  * Optical lattice: A sets of
    crossed laser beams that trap arrays of atoms in an egg-carton-like potential.
  @ General references: Leonhardt NJP(09) [perfect imaging without negative refraction];
    Small & Lam AJP(11)jun [simple derivation of eikonal approximation];
    Ghose & Mukherjee RTS-a1308 [entanglement].
  @ Applications: Singer pw(04)feb [visual effects];
    Mansuripur 09;
    Chang 11 [attosecond optics].
  > Other related topics: see Coherence;
    Fermat's Principle; Optical Magnus Effect.
And Curved Geometry
  @ Geometric optics: Gatland AJP(02)dec [thin-lens ray tracing];
    > s.a. Contact Geometry; finsler geometry;
    gravitational phenomenology.
  @ Optical geometry: (a.k.a. Fermat geometry) Sonego et al PRD(00)gq [collapse, and black-hole radiation];
    Rosquist NCB(02) [neutron stars and black holes];
    Abramowicz & Sonego 04;
    Westman & Jonsson CQG(06)gq/04;
    Balakin & Zimdahl GRG(05)gq [and birefringence];
    Sonego & Abramowicz JMP(06)gq/05 [and electromagnetic self-force];
    Jonsson CQG(06)-a0708 [across the horizon];
    Fino et al a2009 [and intrinsic torsion];
    > s.a. forces [inertial].
  @ Specific spacetimes: Stuchlík et al CQG(00)-a0803 [Kerr-Newman black hole];
    Kovar & Stuchlík CQG(07)gq [Kerr-de Sitter black hole];
    Bloomer a1111 [Kerr spacetime, and lensing];
    > s.a. black-hole geometry; reissner-nordström solutions.
  > Related topics:
    see decomposition; maxwell fields in curved spacetime.
Quantum Optics
  > s.a. modified gravity [PPN parameters]; photon;
  quantum-gravity phenomenology; wigner functions.
  * Idea: It includes the photoelectric
    effect, and other effects depending on the particle nature of light.
  * Hong-Ou-Mandel effect: A two-photon
    interference effect in quantum optics demonstrated in 1987 by Chung Ki Hong, Zhe Yu
    Ou and Leonard Mandel; > s.a. Wikipedia
    page.
  @ Texts: Klauder & Sudarshan 65;
    Vogel & Welsch 94;
    Walls  & Milburn 94;
    Mandel & Wolf 95;
    Barnett & Radmore 97;
    Scully & Zubairy 97;
    Peng & Li 98;
    Carmichael 99 [statistical methods];
    Yamamoto & İmamoğlu 99 [mesoscopic];
    Puri 01 [mathematical methods];
    Schleich 01;
    Prykarpatsky et al 02 [and quantum field theory];
    Vedral 05;
    Gerry & Knight 04 [r AJP(05)dec];
    Fox 06 [r PT(07)sep];
    Meystre & Sargent 07;
    Chiao & Garrison 08;
    Orszag 08;
    Grynberg et al 10;
    Leonhardt 10;
    Agarwal 12;
    Milonni 19 [and quantum fluctuations].
  @ Coherent states: Hwang JKPS-qp/05 [vs number-state pictures];
    Gazeau a1810-in [rev].
  @ General references: Klyshko SPU(94) [rev];
    Skagerstam qp/99-ln;
    Agarwal FdP(02)qp-conf [and uncertainty relations];
    Marecki PRA(02)qp [squeezing and inequalities];
    Czachor & Syty qp/02 [non-canonical];
    Janowicz PRP(03) [multiple-scales method];
    Dell'Anno et al PRA(04)qp/03,
    PRA(04)qp/03 [multiphoton, canonical],
    PRP(06) [multiphoton];
    Gies JPA(08) [in strong external fields];
    Shih 11 [introduction];
    Chatterjee et al a1812 [Sudarshan's contributions];
    Banerjee & Jayannavar a1902 [current trends];
    Cantu et al a1911 [repulsive photons].
  @ Related topics: Reid & Walls PRL(84) [violation of Bell's inequalities];
    Brandes PRP(05) [collective effects in mesoscopic systems];
    Brańczyk a1711 [Hong-Ou-Mandel effect, intro];
    Kockum a1912-proc [with giant atoms, rev];
    Aspect proc(19)-a2005 [landmark experiments];
    > s.a. types of quantum measurements.
  > Electromagnetically-induced transparency:
    see Wikipedia page.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 may 2021