|  Gravitational Lensing | 
In General
  > s.a. aharonov-bohm effect; dark-matter
  detection; gravitational light bending.
  * Idea: The lens-like effect
    produced by the deflection of waves (especially light) along different paths.
  * Remark: They are not linear
    lenses, and are not described by Gaussian optics, but one can use Fermat's principle.
  * Experimental results:
    VLA surveys yield few lenses; The universe cannot be closed by masses of
    \(10^{11}\)–\(10^{12}\; M_\odot\); They allow us to make spectra of distant
    (z > 2) galaxies, because of amplification (they are like 100-Kpc
    telescopes); Many double images of galaxies (some with opposite parity) have
    been seen; The first complete Einstein ring has been seen, and the (extended)
    source object reconstructed.
  * Future: 2000s, Look for cosmic
    strings with the space telescope; Find planets; Measure dark-matter distributions.
  > Online resources: see Simulating eXtreme Spacetimes
    page.
Theory > s.a. optics [optical geometry];
  lensing in specific spacetimes [including cosmological constant].
  * Results: There is always
    an odd number of images, unless they are formed by a black hole; Lensing
    has enriched the field of geometrical optics.
  @ General references: Frittelli & Newman PRD(99)gq/98;
    Kling et al PRD(00)gq/99 [iterative];
    Frittelli et al PRD(01)gq/00,
    PRD(01)gq/00 [image distorsion],
    PRD(02)gq [non-perturbative];
    Kochanek et al ApJ(01)ap/00 [Einstein rings];
    Frittelli MNRAS(03)ap [by moving lenses];
    Amore & Arceo PRD(06),
    Amore et al PRD(06) [analytical expressions];
    Werner JMP(07)mp [topological invariants, fixed-point theorem];
    Bozza PRD(08)-a0807 [approximate equations];
    Petters & Werner GRG(10)-a0912 [multiple images and magnification];
    Heavens a1109-ln [and tests of general relativity];
    Aazami & Werner JGP-a1507,
    Werner a1507-MG14 [geometric definition of magnification];
    Harte GRG(19)-a1808 [beyond geometric optics];
    Normann & Clarkson GRG(20)-a1904 [recursion relations].
  @ And MOND: Soussa & Woodard PLB(04)ap/03 [problem];
    Zhao et al MNRAS(06)ap/05;
    Mavromatos et al PRD(09)-a0901;
    Ferreras et al PRD(09)-a0907 [and rotation curves];
    Ferreras et al PRD(12)-a1205 [extended survey];
    Milgrom PRL(13)-a1305;
    > s.a. MOND.
  @ And other gravity theories: Sereno PRD(03)ap [metric theories];
    Schimd et al PRD(05)ap/04 [scalar-tensor including quintessence];
    Capozziello et al PRD(06)ap [4th-order gravity];
    Zhao ap/06-ln,
    Chen JCAP(08)-a0712 [TeVeS];
    Ruggiero GRG(09)-a0712 [f(R), Palatini approach];
    Schmidt PRD(08)-a0805 [f(R) gravity, DGP, TeVeS];
    Nzioki et al PRD(11)-a1002 [f(R) gravity];
    Martinelli et al PRD(11) [satellite mission tests];
    Werner a1904-MG15 [area-metric spacetimes];
    > s.a. cosmic microwave background;
      hořava gravity; Modified Gravity.
  @ Use of lensing as test of gravity theories:
    Knox et al PRD(06)ap/05 [lensing, dark energy and new gravity];
    Keeton & Petters PRD(05),
    PRD(06);
    Smith a0907/PRD;
    Schwab et al ApJ(09)-a0907;
    Bean a0909-wd
      [results disfavor general relativity for 1 < z < 2];
    Bean & Tangmatitham PRD(10)-a1002;
    Liu & Prokopec PLB(17)-a1612 [Verlinde's emergent gravity];
    > s.a. cosmology in higher-order theories.
  @ Related topics: Hasse & Perlick GRG(02)gq/01 [and centrifugal force reversal];
    Suyama et al PRD(05)ap [wave propagation and thin lenses].
References
  > s.a. types of lensing [microlensing, weak lensing].
  @ General:
    Ohanian AJP(87)may [Schwarzschild black hole];
    Blandford et al Sci(89)aug;
    in Böhringer et al 95;
    Schechter ap/99-proc [review];
    Blandford PASP(01)ap [future];
    Wambsganss SA(01)nov;
    Perlick LRR(04)-a1010 [spacetime perspective];
    Jain NJP(07) [focus issue];
    Treu et al AJP(12)sep-a1206 [RL];
    Huwe & Field TPT(15)#5 [undergraduate lab];
    Sauer & Schütz EJP(19)-a1905 [pedagogical].
  @ History: Valls-Gabaud AIP(06)-a1206;
    Sauer AHES(08)-a0704 [history, Einstein and Nova Geminorum 1912];
    Will CQG(15)-a1409 [1919 measurement of the deflection of light, etc];
    Treu & Ellis a1412-in [rev].
  @ Observation:
    news pw(13)oct [most distant lens seen 9.4 Gly away];
    Udalski et al AA-a1504 [OGLE-IV survey].
  @ Intros, reviews: Turner SA(88)jul;
    Narayan & Bartelmann ap/96;
    Straumann ap/97;
    Schneider et al 92;
    Wambsganss LRR(98)ap;
    Fluke et al MNRAS(99)ap/98 [new method];
    Mollerach & Roulet IJMPA(00)ap/99;
    Wambsganss ap/00-IAU,
    in(06)ap;
    Kuijken ASP-ap/03;
    Koopmans & Blandford PT(04)jun [and applications];
    Falco NJP(05);
    Schneider et al ed-06;
    Jetzer et al ed-GRG(10)#9;
    Bartelmann CQG(10)-a1010;
    Dodelson 17.
  @ Time delay: Ciufolini & Ricci gq/03/PRL;
    Gürkan et al a1011-conf [efficient  measurement];
    Linder PRD(11) [and cosmological complementarity];
    Takahashi ApJ(17)-a1605 [time differences between gravitational and electromagnetic waves];
    Piattella & Giani PRD(17)-a1703 [and redshift drift].
  @ Of the cmb:
    Das et al PRL(11),
    Sherwin et al PRL(11)
    + Boughn Phy(11) [and dark energy];
    Jenkins et al PLB(14)-a1403 [Feynman diagram approach].
  @ Of other electromagnetic waves:
    Lu & Pen MNRAS(08)-a0710 [21-cm radiation, diffuse].
  @ Of gravitational waves:
    Wang et al PRL(96);
    De Paolis et al A&A(02)ap;
    Sereno et al PRD(10) [merging of supermassive black holes and LISA];
    Christian et al PRD(18)-a1802 [and detection];
    Hannuksela et al ApJL(19)-a1901 [in LIGO-Virgo binary black  hole events].
  @ Related topics: Asada & Kasai PTP(00)ap [lens rotation];
    Frutos-Alfaro AJP(01)feb-ap/02 [visualization program];
    Courbin & Minniti ed-02 [and astrophysics];
    Nemiroff ApJ(05)ap [magnifying gravity];
    Zhang et al PRL(07) [relationship between lensing and matter overdensity];
    Tippett PRD(11)-a1109 [and cloaking];
    > s.a. higher-dimensional gravity; philosophy of science;
      quantum equivalence principle and tests of the equivalence principle;
      tests of lorentz invariance.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 may 2020