|  Casimir Effect / Energy / Force | 
In General > s.a. quantum field
  theory phenomenology [negative energies]; vacuum.
  * Idea: The QED prediction
    that the vacuum is modified by the presence of boundaries, which has observable
    effects; For example, two conducting uncharged infinite parallel plates will feel
    an attractive force due to vacuum fluctuations of the field, since there are more
    possible zero-point fluctuations outside the plates.
  * Consequences: Tiny as it
    is, the Casimir effect causes parts in nano- and microelectromechanical
    systems (NEMS and MEMS) to stick together; Therefore, it confounds tabletop
    experimental efforts to detect exotic new forces beyond those predicted by
    Newtonian gravity and the Standard Model of particle physics.
  * Calculation: One calculates the
    stress tensor for the quantized electromagnetic field in the region of interest;
    The Drude model treats the metal as a collection of billiard-ball-like positive
    ions and electrons, the "plasma model" assumes the electrons move
    in a fixed lattice of positive ions; 2012, the Drude model works best.
  * Value: For plate separation
    1 micron, the force is ~ 13 N/m2.
  @ Reviews, intros: Kleppner PT(90)oct;
    Milton ht/98-conf [history],
    01;
    Bordag et al PRP(01)qp;
    Lambrecht pw(02)sep;
    Milton JPA(04)ht [progress, rev];
    Nesterenko et al RNC(04)ht/05 [recent results];
    Klimchitskaya & Mostepanenko CP(06);
    Farina BJP(06)ht;
    Lamoreaux PT(07)feb;
    Mostepanenko qp/07-MGXI;
    issue JPA(08)#16;
    Milton JPCS(09)-a0809;
    Pálová et al AJP(09)nov [condensed-matter perspective];
    Milton AJP(11)jul-a1101 [resource letter];
    Lambrecht & Reynaud IJMPA(12)-a1112-conf;
    Reynaud & Lambrecht a1410-ln;
    Simpson & Leonhardt 15.
  @ Reviews, measurements: Lamoreaux qp/99,
    AJP(99)oct [RL];
    Klimchitskaya & Mostepanenko CP(06)qp,
    SPBPU(15)-a1507;
    Strange et al PT(21)jan [uses].
  @ General references: Casimir PKNAW(48);
    Sparnaay Phy(58);
    Israelachvili & Tabor PRS(72);
    Mostepanenko & Trunov 97;
    Milton ht/99-conf,
    ht/00;
    Herdegen APPB(01)ht/00;
    Milton PRD(03)ht/02 [validity];
    Valeri & Scharf qp/05 [microscopic theory];
    Emig IJMPA(10) [general approach to fluctuation-induced interactions];
    Milton LNP(11)-a1005;
    Ingold & Lambrecht AJP(15)feb-a1404 [scattering approach];
    Visser a1601-conf [finiteness of Casimir energy differences].
  @ And algebraic quantum field theory:
    Herdegen & Stopa AHP(10)-a1007;
    Dappiaggi et al a1412.
  @ Interpretation:
    Kolomeisky & Straley a0807 [geometrical];
    Gründler a1303;
    Nikolić PLB(16)-a1605 [not from vacuum energy],
    AP(17)-a1702.
  @ Related topics:
    Milonni PRA(82) [without vacuum radiation field];
    Plunien et al PRP(86);
    Belinfante AJP(87)feb;
    Elizalde NCB(89);
    Calucci JPA(92) [moving bodies];
    Matloob PRA(99) [conducting plates];
    Jaffe PRD(05) [vacuum and forces between charges];
    Milton et al ht/06-MGXI [Green function approach];
    Bachas JPA(07) [sign of force];
    Milonni PS(07);
    Reynaud et al IJMPA(10)-a1001-proc,
    Lambrecht et al LNP(11)-a1006 [scattering approach];
    Cerdonio & Rovelli a1406 [Casimir cavity, and weighing the vacuum];
    Cherroret et al EPJD(15)-a1412 [statistical fluctuations above a disordered medium].
Related Effects and Topics > s.a. Casimir-Polder Force;
  Friction [quantum friction]; inertia;
  Surface Tension.
  * Scharnhorst effect:
    The anomalous, faster than c propagation of photons in the Casimir
    vacuum; > s.a. causality violations.
  @ And boundary conditions: Ravndal hp/00-conf;
    Graham et al NPB(02),
    NPB(04)ht/03 [Dirichlet],
    comment Milton JPA(04)ht;
    Nesterenko JPA(06)ht/05-proc [at spatial infinity];
    Kolomeisky et al JPA(10)-a1002 [single boundary, and UV divergence];
    Cao et al PRD(13)-a1301 [topological Casimir effect, electrodynamics on a compact manifold];
    Asorey & Muñoz-Castañeda a1306
      [general type depending on four parameters].
  @ Measurements: Mohideen & Roy PRL(98)phy;
    Roy et al PRD(99)qp;
    Harris et al PRA(00)qp;
    Bressi et al PRL(02)qp;
    Chen et al PRA(04)qp [and errors];
    Lisanti et al PNAS(05)qp [skin depth effect];
    Klimchitskaya et al IJMPA(05),
    JPA(06)in,
    Chen et al IJMPA(05) [and long-range gravity];
    Krause et al PRL(07) [beyond the proximity-force spproximation];
    Obrecht et al PRL(07)
    + pn(07)feb [T dependence];
    Munday & Capasso PRA(07)-a0705
    + pw(07)jun [in a fluid];
    Esquivel-Sirvent JAP(07)-a0708 [reduction using aerogels];
    Antonini et al JPCS(09)-a0812 [at large distances];
    Klimchitskaya & Mostepanenko IJMPA(11)-a1010 [reliability of experiments];
    García-Sánchez et al PRL(12)
    + news pw(12)jul [accurate measurements between 100 nm and 2 μm, Drude model].
  @ Stress-energy tensor between plates: DeWitt in(79);
    Gibbons in(79);
    > s.a. energy conditions.
  @ Scharnhorst effect:
    Scharnhorst AdP(98)ht;
    Liberati et al PRD(01)qp/00;
    Barone & Farina  PRD(05)ht/04 [2-parameter L];
    > s.a. causality violations.
  @ Radiative corrections: Kong & Ravndal PRL(97)qp;
    Melnikov PRD(01).
  @ Repulsive forces:
    news pw(07)jul [with lens];
    Milton et al IJMPA(12)-a1111-conf;
    Jiang & Wilczek PRB(19) [with chiral material between the plates].
  @ Other topics: Golestanian & Kardar PRL(97)qp [path-integral formulation];
    Hofmann et al EPJC(99)ht/98 [bag model];
    Feinberg et al AP(01)ht/99 [classical limit];
    Kenneth & Nussinov PRD(02)ht/99 [small-object limit];
    Hagen qp/01 [cutoff, Lorentz invariant];
    Avagyan et al PRD(02)ht [in Fulling-Rindler vacuum];
    Scardicchio & Jaffe NPB(05),
    NPB(06) [optical approach];
    Gies & Klingmüller PRL(06) [edge effects];
    Høye et al PRA(16)-a1607 [negative entropies].
  > Other situations and examples: see casimir effect
    in different types of systems [including deformed theories and classical analogs].
More General Situations
  > s.a. Casimir-Lifshitz Force; Krein Quantization.
  * At finite temperature:
    2008, Different theoretical approaches lead to very different predictions
    for the magnitude of the effect, and no consensus exists yet on the
    interpretation of recent absolute measurements of the Casimir force.
  * Dynamical Casimir effect:
    Motion-induced photon creation from the quantum vacuum inside closed,
    perfectly conducting cavities with time-dependent geometries; It was
    proposed in 1970 by Gerald Moore, and is related to the Unruh effect;
    An example is the electromagnetic radiation of moving gravitating bodies
    (> see gravitating matter).
  @ Thermal corrections:
    Mitter & Robaschik EPJB(00)qp/99;
    Mostepanenko et al JPA(06)qp/05-proc [rev];
    Geyer et al IJMPA(06).
  @ T dependence: Genet et al PRA(00);
    Svetovoy & Lokhanin PLA(01)qp;
    Klimchitskaya & Mostepanenko PRA(01)qp;
    Cheng JPA(02) [rectangular cavity];
    Høye et al PRE(03) [transverse electric zero mode contribution];
    Brevik et al qp/03-proc,
    PRE(05)qp/04 [in metals];
    Høye et al JPA(06)qp/05;
    Brevik & Aarseth JPA(06);
    Brevik et al NJP(06)qp [T corrections];
    Jáuregui et al AP(06) [rectangular cavity];
    Lamoreaux a0801;
    Brevik & Milton PRE(08)-a0802;
    Bimonte PRA(08)-a0807 [superconducting cavity];
    Bimonte PRA(09)-a0903 [and Bohr-van Leeuwen theorem];
    Brevik & Høye EJP(14)-a1312.
  @ Dynamical Casimir effect: Schützhold et al PRA(98)qp [response theory approach];
    Dalvit & Mazzitelli PRA(98)qp/97 [renormalization group];
    Golestanian & Kardar PRA(98)qp [path-integral approach];
    Plunien et al PRL(00)qp/99 [finite T];
    Fedotov et al JOB(05) [instantaneous approximation];
    Dalvit et al JPA(06)qp [different geometries];
    Haro & Elizalde PRL(06)ht,
    PRD(07)-a0705 [Hamiltonian approach];
    Haro IJTP(07),
    IJTP(07) [scalar fields];
    Dodonov PS(10)-a1004 [rev];
    Wilson et al Nat(11)jun-a1105
    + news nat(11)jun [observation];
    news pw(11)nov;
    Maghrebi et al PRD(13)-a1210 [scattering approach];
    Lock & Fuentes NJP(17)-a1607 [in curved spacetime, Schwarzschild metric];
    Paraoanu & Johansson EPN(20)-a2010 [overview];
    Cao & Liu a2103 [Feynman diagram approach];
    > s.a. mirrors.
  @ Related topics: Jaekel & Reynaud JdP(92)qp/01,
    JdP(93)qp/01 [motional Casimir effect];
    Krüger et al PRL(11)-a1102 [non-equilibrium fluctuations and interactions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 mar 2021