|  Wave Phenomena | 
Interference, Interferometry
  > s.a. atomic physics; equivalence principle;
  interference; molecular physics;
  neutrino; neutron.
  * Idea: A phenomenon
    that allows the study of wave properties of matter and radiation.
  * New techniques: 2001,
    Multimode waveguide interferometer (MWI) [@ Ovchinnikov & Pfau
    PRL(01)
    + pn(01)sep].
  @ And quantum mechanics:
    Jaekel & Reynaud EPL(90)qp/01 [quantum limits].
  @ Two slits: Sudarshan & Rothman AJP(91)jul;
    Massar qp/03 [as quantum fingerprinting];
    > s.a. interference; Young's Experiment.
  @ And gravity: Camacho PLA(99)qp,
    PLA(99)qp;
    Peters et al Nat(99)aug
    + pn(99)sep;
    Speliotopoulos & Chiao gq/04/PRD [response to gravitational waves].
Wave Tails > s.a. huygens principle.
  * Idea: Wave tails are developed by
    propagating waves in situations in which the Huygens principle is not satisfied.
  * In curved spacetime: Tails are due to a cut
    in the frequency Green function G(ω) along the Im(ω)
    < 0 axis, determined by the asymptotic structure of space (does not depend on horizons);
    The late-time behavior is a power law in Schwarzschild spacetime, but not in general.
  * Effects: Violation of Huygens' principle;
    Ringdown of signal from isolated source; Back-scatter of radiation by curvature.
  @ General references: Friedlander 75;
    Bombelli & Sonego JPA(94)mp/00;
    Noonan CQG(95),
      CQG(95);
    Nolan gq/96;
    Mankin et al PRD(00),
    PRD(01)gq/00 [electromagnetism in curved spacetime];
    Hod CQG(01)gq/00 [tails in general potentials];
    Hod PRD(02)gq [time-dependent].
  @ Spherically symmetric objects: Hod CQG(01);
    Bizoń & Rostworowski PRD(10);
    > s.a. kerr, reissner-nordström,
    and schwarzschild spacetimes.
  @ Different types of fields: Hod CQG(13)-a1402 [massive spin-2 fields];
    Faraoni a1901 [massive scalar, inflaton];
    > s.a. gravitational-wave propagation.
  @ In cosmology: Ellis & Sciama in(72);
    Faraoni & Sonego PLA(92) [scalar waves in FLRW spacetime];
    Faraoni & Gunzig IJMPD(99)ap;
    Haghighipour GRG(05)gq/04 [electromagnetic waves in FLRW spacetime].
  @ Strength of tails: Nolan CQG(97)gq;
    Mankin et al PRD(01)gq/00.
  > Other spacetimes: see kerr spacetimes.
Other Phenomena
  > s.a. diffraction; diffusion;
  dispersion; doppler;
  polarization; Refraction;
  Tractor Beam; wave equations [traveling waves].
  @ Reflection / transmission coefficients: Visser PRA(99)qp [1D potential scattering];
    Mukhopadhyay mp/99 [instantaneous];
    Su et al JPA(08) [exact expressions];
    Boonserm PhD(09)-a0907 [rigorous bounds];
    Boonserm & Visser JHEP(11)-a1005;
    Lee et al TPT(16)oct [total internal reflection, demo];
    > s.a. zeno effect.
  @ Phase singularities:
    Berry & Dennis PRS(01),
    PRS(01) [knotted].
  @ Beyond geometrical optics: Maj JMP(05)mp/04 [Wigner-Weyl vs complex geometric optics].
  @ Other: Kim & Noz FP(05)qp/04-proc [covariant standing waves];
    Kowar et al MMAS(11)-a0906 [attenuation, frequency-dependent];
    Valero a1406
      [topological aspects, singularities and critical points];
    Horsley & Bugler-Lamb PRA(16)-a1601 [negative frequencies, microscopic model];
    Patsyk et al PRX(18) [accelerating wave packets in curved space].
  > Other: see ergodic theory;
    Faraday Waves; light; quantum mechanics
    [wave-particle duality]; resonances; solitons;
    turbulence.
Superluminal Propagation
  > s.a. causality violations; electromagnetism;
  information; light; photons;
  Superluminal Communication; tachyons.
  * Experiment: Superluminal group velocities
    seen by various labs working on evanescent electromagnetic waves (1993–1994); 2002, Pulses
    sent over a significant distance in a 120-m cable made from a coaxial 'photonic crystal'.
  * Other possibilities:
    Quantum tunneling (e.g., photons); Ultrasound in water with plastic beads; Tachyons.
  * Theory: In connection with possible
    causality violations, the relevant velocity is the front velocity, which coincides with
    the one given by the characteristics of the pde governing wave propagation [for a large
    class of equations, @ see refs in Shore NPB(02)gq].
  @ General references: Tiwari 03;
    Ranfagni et al PLA(07) [interpretation];
    Eperon et al a1802 [predictability].
  @ Group v > c:
    Fox et al PRS(70);
    Diener PLA(96) [information transfer],
    PLA(97) [energy transport];
    üttiker & Thomas SM(98)qp/97;
    Aharonov et al PRL(98)qp [in media with inverted populations];
    Garrison et al PLA(98)qp [and causality];
    Kidambi & Widom PLA(99) [through slabs];
    Jackson et al PRA(01)
      [and vf < c];
    Haché & Poirier APL(02);
    Brunner et al PRL(04)qp
    + pw(04)nov [measurement, and signal speed];
    Mugnai PLA(07) [and causality];
    > s.a. klein-gordon fields.
  @ QED effects in curved spacetime: 
    Konstantinov gq/98;
    Shore NPB(02)gq,
    CP(03)gq.
  @ Other situations: Aharonov et al PRL(98)qp [quantum limitations];
    Nowacki qp/02 [??];
    Cardone & Mignani PLA(03) [Cologne & Florence experiments];
    Mobley in ASA(05);
    Ellis et al GRG(07)gq [matter with superluminal speed of sound];
    Halvorsen & Leinaas PRA(08)-a0710 [in a birefringent crystal];
    Ranfagni et al PLA(08) [microwaves, diffraction effects];
    > s.a. klein-gordon fields; modified lorentz symmetry.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 jan 2019