|  Thermodynamic Systems | 
In General > s.a. thermodynamics [Hamiltonian approach].
  @ Gases: Dib & Espinosa NPB(01)mp/00
      [magnetized electron gas and Hurwitz zeta functions];
    Ciccariello JMP(04) [ideal Fermi and Bose gas];
    Kreuzer & Payne AJP(11)jan [heating a room].
  @ Chaotic systems: Beck & Schlögl 95 [III];
    Srednicki JPA(96)cd/95 [fluctuations, quantized].
  @ Geometric:
    Leuzzi & Parisi JPA(00) [2D tiling model].
  @ Continuum systems: Safran 94 [surfaces/membranes];
    Wilmański 08;
    Muschik & von Borzeszkowski GRG(09) [relativistic];
    Roundy & Rogers AJP(13)jan [rubber band, experiment];
    Meier 14 [surfaces and interfaces];
    > s.a. Continuous Media.
  @ Small systems: Leboeuf & Monastra AP(02) [small Fermi systems];
    Gross cm/04 [small microcanonical];
    Korbel et al a2004 [with emergent structures];
    > s.a. modified thernodynamics.
  @ In curved spacetime:
    Chrobok & von Borzeszkowski GRG(05) [fluids];
    Kothawala a1604-fs
      [universal curvature correction to the partition function].
  @ Other systems: Gadiyar et al JPA(03)mp/02 [orthogonal and Hadamard matrices, entropy];
    Boyer AJP(03)sep
      [harmonic oscillator, and black-body radiation];
    Hartmann et al cm/04-ch [on nanoscale];
    Tarasov IJMPB(05)-a0706 [few-particle systems];
    Stacey RPP(10) [Earth];
    Güémez & Fiolhais EJP(14) [rotating systems];
    Zhu et al a1407
      [irreversible, conservation-dissipation formalism];
    Anahory Simoes et al a2004 [systems with friction, contact geometry].
  @ Non-standard systems: Jizba & Arimitsu AIP(01)cm,
    AP(04)cm/02 [fractal systems];
    Huang JHEP(09)
      [fermion and boson gases in non-commutative fuzzy spacetime];
    Shariati et al JPA(10)-a1104 [Lie-type non-commutativity];
    Najafizadeh & Saadat ChJP(13)-a1108 [in non-commutative phase space];
    Quevedo et al EPJC(17)-a1701
      [classification in terms of the homogeneity properties of their fundamental equations].
  @ Discrete systems: Anders & Giovannetti NJP(13)-a1211 [discrete quantum processes];
    Zürcher AJP(14)mar [2-state model of bread baking];
    Sartori & Pigolotti PRX(15) [error correction];
    > s.a. cell complex; graphs in physics;
      spin models.
  > Other types of systems:
    see complexity; condensed matter [glass, liquids];
    Gross-Neveu Model; Many-Body Systems;
    stochastic processes.
  > More general systems:
    see computation; generalized thermodynamics
    [quantum, relativistic, nanoscale]; metamaterials [granular materials].
Engines and Related Devices
  > s.a. Heat Engine; Maxwell's Demon.
  * Carnot cycle: All Carnot
    cycles between the same two temperatures have the same efficiency,
    η = (Q1
    − Q2)
    / Q1
    = (T1
    − T2)
    / T1;
    Any other engine between the same temperatures is less efficient.
  @ Carnot cycle: Lee AJP(01)aug [for photon gas];
    Arnaud et al phy/03/AJP [history];
    De Liberato & Ueda PRE(11)-a1007 [for non-equilibrium reservoirs];
    Lucia PhyA(13) [meaning of the Carnot efficiency];
    Johnson PRD(18)-a1703
      [heat engine with efficiency close to Carnot engine and finite power].
  @ Carnot cycle, quantum: Bender et al PRS(02)qp/01;
    Dillenschneider & Lutz EPL(09)-a0803v1 [improved efficiency].
  @ Other devices: Linden et al PRL(10)-a0908 [smallest possible refrigerators];
    Brandner et al PRL(13)
    + Prosen Phy(13)
      [efficiency of thermoelectric devices and breaking of time-reversal symmetry].
Field Theories > s.a. GUP phenomenology;
  string theory; types of field theories [thermal].
  * Yang-Mills theory: One motivation for studying
    the thermodynamics of Yang-Mills theories is to understand the confinement phase transition.
  * Cosmology: While the energy of the universe has
    been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological
    entropy (S/k = about a thousand googols) is almost entirely, about (1 −
    10−15), from black holes (only 10−15
    from everything else).
  @ General references: Snoke et al AP(12) [basis for the second law, evolution toward equilibrium];
    Giusti & Meyer JHEP(13)-a1211 [implications of Poincaré symmetry];
    Piattella et al CQG(14)-a1309 [scalar field, thermodynamic quantities and speed of sound];
    Kurihara et al JTAP(14)-a1312
      [trajectories for a classical non-relativistic massive point particle, and classical mechanics
      as an equilibrium state of statistical mechanics];
    Teixidó-Bonfill et al PRA(20)-a2008 [quantum fields, first law].
  @ Scalar and spinor fields: Arda et al FBS(16)-a1510 [Klein-Gordon and Dirac fields];
    Panerai PRD(16)-a1511 [equilibrium states in stationary spacetimes].
  @ Electromagnetism, photon gas: Akkermans et al PRL(10)-a1010 [on a fractal];
    Zhitnitsky PRD(13)-a1308 [Maxwell theory on a compact manifold, topological aspects];
    Chenu et al PRL(15)-a1409 [thermal light is not a statistical mixture of pulses];
    Faruk & Rahman PRD(16)-a1605,
    Mishra et al AP(17)-a1606 [blackbody radiation in DSR];
    > s.a. thermal radiation.
  @ QCD: Panero PRL(09)-a0907;
    Schaefer et al PoS-a0909;
    Bellucci et al IJMPA(11);
    Cornwall MPLA(12)-a1203 [entropy];
    Herbst et al PRD(13)-a1302,
    a1401-conf [and phase structure];
    Herbst et al PLB(14)-a1308 [at vanishing density];
    Cyrol et al PRD(18)-a1708 [gluon propagator, vertices].
  @ Other Yang-Mills theory: Hofmann IJMPA(05)ht [and confinement],
    ht/05,
    ht/05,
    ht/05,
    MPLA(06),
    MPLA(07) [SU(2) and SU(3)],
    a0710;
    Caselle et al JHEP(11)-a1105 [3D SU(N) theory];
    Hofmann AIP(11)-a1109 [thermal ground state];
    Hofmann 16 [quantum
      Yang-Mills theory, e1 r CP(12)].
  @ Cosmology / The universe:
    Coule IJMPD(03) [brane cosmology];
    Hosoya et al PRL(04)gq [information entropy];
    Frampton et al CQG(09)-a0801,
    JCAP(09)-a0905 [relative contributions];
    Berman IJTP(09), IJTP(09);
    Egan & Lineweaver ApJ(10)-a0909 [supermassive-black-hole contribution];
    Sadjadi et al EPL(10)-a1009 [in f(R,G) gravity, and generalized second law];
    Tegmark PRD(12)-a1108 [tripartite framework and inflationary entropy];
    Pavón & Radicella GRG(13)-a1209 [the entropy seems to tend to a maximum value];
    Chen et al JCAP(14)-a1212 [inflation as a solution to the problem];
    Lundgren et al a1304;
    Saha et al AHEP(14)-a1404 [irreversible];
    Mitra et al GRG(15)-a1610 [in Lanczos-Lovelock gravity];
    Barnes & Kellman a1511 [alternative entropy in accord with the second law];
    Moradpour MPLA(17)-a1603 [the Friedmann equation and thermodynamics];
    Clementine et al Ent(17)-a1707;
    Rovelli Ent(19)-a1812 [in the early universe];
    > s.a. general-relativistic cosmology
      and string cosmology;
      Wikipedia page.
  @ Cosmological particle creation: Liu et al CQG(16)-a1409 [quantum fields in an expanding universe];
    Lima & Baranov PRD(14)-a1411 [and kinetic theory].
  @ Gravitation: Nielsen & Ninomiya PTP(06)ht/05 [and cosmological constant],
    JHEP(06)ht [and initial conditions];
    Wang et al PRD(06)gq/05 [accelerated expansion];
    Kim et al JCAP(08) [and evolution];
    Tegmark in(08)-a0904 [applications of the second law];
    Chacón-Acosta et al Sigma(11)-a1109 [polymer quantum systems];
    Tresguerres PRD(14)-a1310 [and electromagnetism];
    > s.a. entropy.
  > Other gravity-related systems:
    see black holes; dark energy;
    gravitating many-body systems; gravitational
    thermodynamics; horizons.
  > Other field theories:
    see asymptoticaly safe theories; fractals in physics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 nov 2020