|  Aharonov-Bohm Effect | 
In General
  > s.a. Aharonov-Casher Effect; geometric phase;
  locality in quantum mechanics; topology in physics.
  * Idea: The phase difference
    Δφ = (e/\(\hbar\)) Φ between the wave functions
    of two electrons going different ways around a line of magnetic dipoles with
    magnetic flux Φ; It was actually proposed by Ehrenberg and Siday years
    before the work by Aharonov and Bohm.
  * Significance: It shows
    that if in some non-simply-connected region R the magnetic field
    B = 0 we cannot conclude that A = 0, because A is
    a connection, and this has physical effects beyond the presence of forces.
  * Potential vs field:
    If one wants to obtain it as a local interaction of the electron current with
    something, then one has to use the vector potential A; But the effect
    can be explained as an interaction of the electron's magnetic field inside
    the solenoid with the other magnetic field, without using As at
    all (Ó Raifeartaigh).
  * Remark: It can be obtained
    for any theory of particles coupled to a connection, including gravity, with
    conical singularities.
  @ General references:
    Ehrenberg & Siday PPS(49);
    Bohm & Aharonov PR(57);
    Aharonov & Bohm PR(59),
    PR(61);
    Merzbacher AJP(62)apr;
    Peshkin PRP(81);
    Peshkin & Tonomura 89;
    Holstein CP(95);
    Magni & Valz-Gris JMP(95);
    Adami & Teta LMP(98)qp/97 [Hamiltonians];
    Dabrowski & Stovícek JMP(98) [δ-function interaction];
    Aharonov  & Kaufherr PRL(04)qp;
    de Oliveira & Pereira JSP(08)-a0810 [justification of hamiltonian];
    Batelaan & Tonomura PT(09)sep;
    Sturrock & Groves PT(10)apr-a0910 [attribution to Ehrenberg and Siday];
    Eskin a1007 [simple proof];
    Dennis et al ed-JPA(10) [50 years];
    Dulat & Ma PRL(12)-a1203;
    Hiley a1304 [early history, before Aharonov and Bohm];
    Pearle & Rizzi PRA(17)-a1507 [inclusion of the source],
    PRA(17)-a1605 [three alternative views];
    Franklin AJP(19)aug [non-locality of magnetic field effect];
    Das Gupta a2010-ch.
  @ Geometric: Tiwari qp/04 [and geometric phase];
    Huérfano et al IJTP(07)mp. 
  @ Wave function: Alvarez PRA(96);
    Berry & Shelankov JPA(99);
    Richard a0811 [expressions for wave operators];
    > s.a. representations in quantum mechanics.
  @ Interpretation:
    Belot BJPS(98) [repercussions];
    Blanco FP(99) [no classical interpretation];
    Boyer FP(00),
    FP(00),
    FP(02);
    Costa de Beauregard FP(04) [and measurement of A];
    Mattingly SHPMP(06) [gauge matters];
    Caprez et al PRL(07)-a0708,
    comment Ivezić a1407 [macroscopic/classical test];
    Katanaev RPJ(11)-a0909,
    RPJ(11)-a1212 [geometrical];
    Peshkin JPA(10)-a1009 [against a proposed local explanation];
    Fearn & Nguyen a1104-conf [using classical forces];
    Vaidman PRA(12)-a1110,
    comment Aharonov et al PRA(15)-a1604 [on the role of potentials];
    Kowar a1111
      [causal explanation in non-instant field model of electrodynamics];
    Vaidman fs(14)-a1301 [paradoxes, locality and entanglement];
    Wallace a1407;
    Boyer wd-a1408 [classical electromagnetic force];
    Batelaan & Becker a1507 [loopholes];
    Saldanha FP(21)-a1910 [local description].
Related Topics
  > s.a. charge [quantization]; Sagnac Effect.
  @ Experiments:
    Werner & Brill PRL(60) [theoretical];
    Chambers PRL(60) [confirmation];
    Boyer FPL(06) [and forces];
    Caprez et al PRL(07) [showing absence of forces];
    Byer FP(08);
    Laganá a1403 [spectroscopic version].
  @ On a cone: Alvarez JPA(99);
    Sitenko & Vlasii JPA(10)-a1002 [and short-wavelength scattering limit];
    Andrade et al PRD(12),
    a1207 [for spin-1/2 particle].
  @ Different particles and backgrounds:
    Horner & Goldhaber PRD(97) [for spin-1 fields];
    Spavieri PRL(99) [with electric dipole];
    Sjöqvist AQC(04)qp/03 [molecular];
    Horsley & Babiker PRA(08) [role of internal degrees of freedom];
    Buniy & Kephart PLA(09) [knotted magnetic solenoid].
  @ Electric field version:  Walstad IJTP(10)-a1607;
    Weder JMP(11)-a1006;
    Walstad IJTP(17)-a1607.
  @ Gravitational analog: Bezerra JMP(89);
    Harris AJP(96)apr [for photons];
    Tartaglia gq/00 [and lensing];
    Barros et al MPLA(03);
    Marques & Bezerra PLA(03),
    MPLA(04);
    Heller et al IJTP(08);
    Fonseca et al PLA(10)-a0908 [in a conical graphene sheet];
    Hohensee et al PRL(12)-a1109 [force-free gravitational redshift];
    Chiao et al fs(15)-a1301;
    Nouri-Zonoz & Parvizi PRD(13)-a1306 [effects of Gaussian curvature].
  @ Other topics: Dowling et al PRL(99) [and similar phases];
    Aguilar & Socolovsky IJTP(02) [and Green's theorem];
    Furtado & Duarte PS(05) [dual];
    Dragoman & Bogdan qp/05 [in momentum space];
    Nesterov IJGMP(07) [and non-associative, path-dependent wave functions];
    Sitenko & Vlassi a1005,
    AP(11) [quasiclassical limit];
    de Oliveira & Romano FP(20)-a2002 [magnetic flux and self-adjoint extensions of the Hamiltonian].
  @ And covariance / Lorentz invariance: Singleton & Vagenas PLB(13)-a1305 [covariant generalization];
    Kang a1308 [fully relativistic treatment].
  @ Other variations: Holstein AJP(91)dec;
    Franchini & Golhaber PS(08) [many vortices];
    Jones-Smith et al PRD(10)-a0911 [oscillating solenoid, radiation];
    Fang et al PRL(12) [for photons, from a harmonically modulated refractive index];
    Chiao a1206 [ferromagnetic core covered with a superconducting material];
    > s.a. diffraction; non-commutative geometry.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 feb 2021