|  Quantum Field Theory Formalism and Techniques | 
General Features
  > s.a. perturbative approach / interpretations of quantum mechanics.
  * Linearity: We can have kinematical
    linearity (the space of fields is linear), and dynamical non-linearity (field
    equations), e.g. in λφ4
    scalar field theories; For non-Abelian theories or gravity, on the other
    hand, there are already kinematical non-linearities; Traditionally,
    non-linear fields have been treated only perturbatively, although
    non-perturbative techniques are being developed, especially for gravity;
    > s.a. axiomatic approach.
  * Quantum field tomography:
    The reconstruction of unknown quantum field states based on data on
    correlation functions.
  @ General references: Cheng et al CP(10) [quantum mechanics as limiting case, spacetime resolution];
    Dvali a1101
      [classicalization vs weakly-coupled UV completion];
    Padmanabhan EPJC(18)-a1712 [relationship with quantum mechanics].
  @ Probabilistic techniques: Damgaard et al ed-90;
    Garbaczewski et al PRE(95)qp;
    Man'ko et al PLB(98)ht [probability representation];
    Dickinson et al JPCS(17)-a1702 [working directly with probabilities].
  @ Euclidean field theory:
    Guerra mp/05;
    > s.a. Wick Rotation.
  @ Covariant Schrödinger formalism:
    Freese et al NPB(85);
    Kyprianidis PRP(87).
  @ Light front formulation:
    Allen PhD(99)ht;
    Ullrich JMP(04);
    Polyzou a2102 [relation with instant formulation].
  @ Worldline formalism: Bonezzi et al JPA(12)-a1204,
    Franchino-Viñas a1510-PhD [for non-commutative theories];
    Bastianelli & Bonezzi a1504-proc [graviton self-energy];
    Bonora et al a1802 [for a massive fermion model];
    > s.a. approaches to quantum gravity [correlated worldlines].
  @ Quantum field tomography: Steffens et al NJP(14)-a1406,
    nComm(15)-a1406;
    Berra-Montiel & Cartas a2006 [and deformation quantization].
  @ Other formulations: Aldaya et al JPA(88) [group manifold approach];
    Shajesh & Milton ht/05 [Fradkin's representation];
    Nikolić EPL(09)-a0705 [in terms of integral curves of particle currents];
    Villalba-Chávez et al JPG(10)-a0807 [Hamiltonian vs Lagrangian formalisms];
    Anselmi EPJC(13)-a1303
      [general field-covariant approach, and renormalization as a changes of variables];
    Dickinson et al JPCS(15)-a1503 [with negative-frequency modes].
  > Related concepts:
    see angular momentum; anomalies;
    arrow of time; causality in quantum field
    theory; quantum chaos; topology.
Non-Perturbative Approach
  > s.a. locality in quantum field theory; QED;
  renormalization; symmetry breaking.
  @ General references:
    Rajaraman PRP(75);
    Gervais & Neveu PRP(76);
    Brézin & Gervais PRP(79);
    Fröhlich 92;
    Ferrara ht/96-conf;
    Borne et al 01 [and structure of matter];
    Frishman & Sonnenschein 10,
    summary a1004;
    Dzhunushaliev a1003 [quantum corrections];
    Bakulev & Shirkov a1102-conf;
    Dunne & Ünsal JHEP(12)
      [resurgence theory, the trans-series framework, and Borel-Écalle resummation];
    Strocchi 13;
    Fried 14 [functional approach];
    Trachenko & Brazhkin AP(14) [insights from liquid theory];
    Shojaei-Fard a1811
      [phenomenology, mathematical perspective].
  @ Non-local aspects: Visser PLA(03)ht [covariant wavelets];
    Paugam JGP(11)-a1010 [observables];
    > s.a. instanton; monopole;
    soliton; Sphaleron.
  @ In curved spacetime:
    Aastrup & Grimstrup a1712 [and non-commutative geometry].
  @ Related topics: Bender et al JMP(90) [δ expansion];
    Turner PhD(96)ht/01;
    Ksenzov PLB(97) [vacuum];
    Dzhunushaliev & Singleton IJTP(99)ht/98;
    Salwen & Lee PRD(00)ht/99
      [2-dimensional φ4];
    Kizilersu et al PLB(01)ht/00;
    Hogervorst et al PRD(15)-a1409 [Truncated Conformal Space Approach];
    Clavier PhD-a1511 [and Hopf algebra of renormalization];
    Bellon FrPh(16)-a1701 [Borel transforms and alien calculus];
    > s.a. other approaches [loop quantization].
Changing Variables / Field Redefinitions > s.a. Coleman-Mandula
  Theorem; CPT; path-integral quantization.
  * Idea: Leads to the
    same physics (equivalence theorem, Chisholm theorem) if the origin
    in field space is not changed, otherwise masses can change; An
    appropriate Lee-Yang term must be introduced in the lagrangian.
  * Chisholm theorem: Given
    the S-matrix elements for a field φ, the interpolating field
    is not unique; A point transformation \(\phi \mapsto \phi\,F(\phi)\),
    with F(0) = 1, does not change the physics.
  @ General references:
    Lee & Yang PR(62);
    Salam & Strathdee PRD(70);
    Honerkamp & Meetz PRD(71);
    Gerstein et al PRD(71).
  @ Chisholm theorem:
    Chisholm NP(61);
    Kamefuchi et al NP(61); Coleman
    et al PR(69);
    Lam PRD(73);
    Kallosh & Tyutin SJNP(73);
    Bergere & Lam PRD(76);
    Bando et al PRP(88);
    Tyutin PAN(02)ht/00;
    in Donoghue et al 14.
Other Techniques and Concepts
  > s.a. approaches [enhanced quantization, general-boundary formulation];
  canonical and stochastic quantum mechanics.
  @  General references: Gitman & Tyutin CQG(90) [from first quantization];
    deLyra et al PRD(91) [lattice, differentiability];
    Lam JMP(98)ht,
    ht/98-conf [integrals of time-ordered products];
    Neumaier gq/03;
    Jaffe & Jäkel CMP(06) [exchange identity for non-linear bosonic fields];
    Sibold & Solard PRD(09) [conjugate variables];
    Hiroshima et al a1203-ln [enhanced binding];
    Dybalski & Gérard CMP(14)-a1308 [criterion for asymptotic completeness];
    Vatsya a1404 [geometrical];
    Dunne & Unsal a1501-conf [resurgent trans-series and Picard-Lefschetz theory];
    Várilly & Gracia-Bondía NPB(16)-a1605 [refined notion of divergent amplitudes].
  @ Frameworks:
    Piazza & Costa PoS-a0711 [regions as subsystems];
    Stoyanovsky Dokl-a0810 [definition of dynamical evolution].
  @ Techniques: Oehme ht/00-en [reduction of parameters];
    Drummond JPA(17)-a1611 [coherent functional expansions];
    Sakhnovich a1710 [approach to divergences];
    Polyzou et al FBS(18)-a1712-conf [multiscale methods];
    Gough & Kupsch 18 [combinatorial approach];
    Blümlein a2103 [intro to analytic calculation methods];
    Jackson et al a1805 [algebraic and combinatorial techniques].
  @ Mathematical concepts:
    Carey PLB(87) [cocycles];
    Brown & Schnetz a1304 [modular forms];
    Lanéry a1604 [with projective limits of state spaces].
  > Techniques:
    see fractional calculus; cellular automata;
    clifford algebra; Coarse-Graining;
    cohomology theories; Colombeau Algebra;
    computational physics; distributions [products];
    effective quantum field theory;
    Elliptic Genera; field theory [current algebra];
    green functions; Hopf Algebra; K-Theory;
    Motives; path integrals; quantum field theory
    [including beable-based pilot-wave]; regularization;
    states [semiclassical quantization]; Wavelets.
  > Related concepts:
    see boundaries; bundle [gerbe];
    complex structure; Determinant;
    Dirac Sea; lattice field theory; logic;
    Machine Learning; measurement;
    N-Point Functions; non-commutative
    field theory; quantum information; representations [and pictures];
    resonance; Schwinger-Dyson Equation;
    Schemes; states [including non-equilibrium];
    symplectic structures; types of fields [including
    polymer representation]; types of theories; Unitarity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 may 2021