|  Quantum Field Theory – Types of Fields | 
In General
  > s.a. quantum gauge theories; tachyons;
  types of field theories.
  * Higher-spin fields: At most two out
    of the three properties of unitarity, flat space, and non-trivial higher spin states
    can be satisfied; There is an incompatibility between pointlike localization and the
    Hilbert space formulation for interacting higher-spin fields; It can be resolved by
    passing to a Krein space setting, which leads to the BRST gauge formulation, or
    weakening the localization from pointlike to stringlike fields.
  @ Massless fields: Lev TMP(04)ht/02 [massless particles];
    Aste LMP(07)ht [self-coupling and mass resummation].
  @ Other general types: Helfer ht/99,
    ht/99 [bosonic];
    Jourjine a1306 [bi-spinors];
    Gudder a1811 [toy models];
    > s.a. clifford algebra.
Scalar Fields
  > s.a. computational physics [quantum computation].
  @ λφ^4 theory: Frasca IJMPA(07)ht/06 [triviality];
    Rivasseau AMP(09)-a0906 [zero-dimensional, pedagogical];
    Klauder TMP(15)-a1405 [non-trivial quantization];
    Jora a1503
      [trivial for all values of the bare coupling constant λ];
    Fantoni & Klauder a2012 [affine quantization];
    > s.a. scalar field theories.
  @ Other scalar field theories: Ho et al PRE(98)qp [open system];
    Klauder a1005,
    JPA(11)-a1101 [divergence-free];
    Cortez et al CQG(11)-a1106 [with time-dependent mass];
    Cahill PRD(13)-a1212 [finite theories];
    Ellis et al NPB(16)-a1512 [new prescription, 'complete normal order'];
    > s.a. approaches [PT-symmetric]; dirac
      quantum field theory [derivative coupling]; klein-gordon quantum fields;
      regularization; renormalization.
  @ Finite temperature: Loran PLB(07)ht/06
      [λφ4 on a circle];
    Brandt et al PRD(08)-a0806
      [gravity-like generalized φ3, thermal instability].
  @ Polymer variables: Ashtekar et al CQG(03)gq/02 [and Fock];
    Kamiński et al CQG(06)gq/05,
    CQG(06)gq;
    Hossain et al PRD(10)-a0906,
    PRD(09)-a0906 [massless, phenomenology];
    Laddha & Varadarajan CQG(10)-a1001 [and classical limit];
    Husain & Kreienbuehl PRD(10)-a1002 [ultraviolet behavior];
    Hossain et al PRD(10)-a1007 [propagator];
    Domagała et al a1210-proc [coupled to lqg];
    Sengupta PRD(13)-a1306 [with non-degenerate vacuum];
    Kajuri IJMPA(15)-a1406 [path-integral formulation, Lorentz symmetry violation];
    Arzano & Letizia PRD(14)-a1408 [localization and diffusion];
    Husain & Louko PRL(16)-a1508 [low-energy Lorentz violation];
    Garcia-Chung & Vergara IJMPA(16)-a1606 [equivalent to the Fock representation];
    Varadarajan CQG(17)-a1609 [ultralocality and propagation];
    Kajuri & Sardar PLB(18)-a1711 [spontaneous excitation, low-energy Lorentz violation];
    Berra-Montiel CQG(20)-a1908 [Wigner functional];
    > s.a. 2D quantum gravity; causality in quantum
      field theory; fock space; FLRW quantum cosmology;
      klein-gordon fields; phenomenology of cosmological perturbations;
      Polymer Representation; thermodynamic systems.
Other Types of Fields
  > s.a. types of quantum field theories.
  @ Spin, fermion fields: Nolland & Mansfield IJMPA(00) [fermions, Schrödinger representation];
    Iliev ht/04 [spin-1/2, momentum picture];
    Forte LNP(07)ht/05 [spin-statistics, path integrals, etc];
    Kirillov & Savelova a0810 [instability from topology fluctuations];
    Dvoeglazov JPCS(11)-a1008 [field operators and acausal solutions];
    Trifonov JPA(12)-a1207 [non-linear fermions of degree n];
    > s.a. dirac quantum field theory; ising model.
  @ Vector fields: van Hees ht/03 [massive vector fields, renormalizability];
    Djukanovic et al IJMPA(10)-a1001 [massive vector bosons, path integral];
    Dvoeglazov JPCS(11)-a1008 [field operators and acausal solutions];
    Silenko PRD(14)-a1404 [in a non-uniform magnetic field, Foldy-Wouthuysen Hamiltonian].
  @ Spin-3/2 fields: Qiu et al IJGMP(06)ht [in Minkowski spacetime];
    Savvidy a1005,
    a1111 [electromagnetic interactions];
    Hack & Makedonski PLB(13)-a1106 [no-go result].
  @ Spin-2 fields:
    Leclerc gq/06 [Faddeev-Jackiw quantization].
  @ Theories of connections: Ashtekar et al JMP(95)gq;
    Bojowald & Kastrup CQG(00)ht/99 [symmetry reduction];
    Lewandowski et al CMP(06) [uniqueness of representations];
    Okołów CMP(09)gq/06 [diffeomorphism-invariant, non-compact G];
    > s.a. QED; QCD.
  @ Higher-spin fields: Mühlhoff a1103 [fermions in curved spacetimes]
    Tóth EPJC(13)-a1209 [projection-operator approach];
    Taronna PhD-a1210;
    Toth IJMPA(14)-a1309 [with reversed spin-statistics relation];
    Grumiller et al JHEP(14)-a1403 [no-go result];
    Schroer FP(15)-a1407 [Hilbert-space setting];
    Rivasseau EPL(15)-a1507 [tensor field theories, asymptotic freedom];
    > s.a. Weinberg-Witten Theorem.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2021