|  Perturbative Quantum Field Theory | 
In General > s.a. Feynman Diagram;
  Feynman Integrals; renormalization.
  * Idea: Methods that allow us
    to calculate amplitudes for processes as power series in the strength of the
    interaction; They are approximate methods that work well except for non-linear
    fields in strong-field situations.
  * Types: One normally uses
    covariant perturbation theory, but light front and others are also possible;
    Causal perturbation theory is an approach in which a specific causality condition
    is imposed at every order of perturbation theory and divergent integrals are
    avoided from the outset.
  * Loop expansions: Tree
    diagrams are normally associated with classical physics, while loop effects
    are considered quantum mechanical in nature; This is not always the case.
  * Remark: Renormalizability
    does not imply superrenormalizability.
  @ General references: Fischer IJMPA(97) [rev];
    Sterman IJMPA(01) [intro];
    Schubert PRP(01) [string-inspired];
    Dunne ht/02-conf [and non-perturbative];
    Szabo ht/05-en [intro];
    Hollands a0802 [consistency conditions framework];
    Stora IJGMP(08)-a0901 [renormalized];
    Kreimer a0909-conf [algebraic structure];
    Borcherds ANT(11)-a1008 [using regularization and renormalization];
    Solomon JPCS(11)-a1011 [Bell numbers and Hopf algebras];
    Sati & Schreiber a1109-ch [mathematical];
    Flory et al a1201-ln [making sense of perturbative expansions].
  @ Amplitude calculations: 
    Holstein & Donoghue PRL(04)ht [loop vs \(\hbar\) expansions];
    Holstein & Donoghue PRL(04) [tree diagrams vs loop effects];
    Brandhuber et al JPA(11)-a1103 [tree-level amplitudes];
    Feng & Luo FrPh(12)-a1111 [tree-level amplitudes, on-shell recursion relations];
    Ellis et al PLB(12) [one-loop calculations];
    Matone PRD(16)-a1506 [Schwinger's trick for a class of scalar theories].
  @ Divergences, infinities: Jackiw in(00);
    Hurst RPMP(06) [history];
    Weinberg a0903;
    > s.a. QED.
  @ And algebraic quantum field theory:
    Dütsch & Fredenhagen CMP(01)ht/00;
    Bergbauer & Kreimer in(09)-a0704.
  > Related topics:
    see deformation quantization; fock space;
    instanton [including WKB]; S-Matrix;
    scattering; Time-Slice Axiom.
Schemes and Techniques > s.a. series.
  @ Operator product expansion: Hollands & Kopper CMP(12)-a1105,
    Holland et al CMP(15)-a1411 [convergence];
    > s.a. Scholarpedia page;
    Wikipedia page.
  @ Causal perturbation theory: Aste & Trautmann CJP(03)ht [UV finite results];
    Grangé & Werner qp/06;
    Aste PoS-a0810;
    Aste et al PPNP(10)-a0906 [examples];
    > s.a. Dirac Sea.
  @ Proposals for divergence-free approaches:
    Sharatchandra a0707;
    Altaisky PRD(10)-a1002;
    Klauder a1005,
    JPA(11) [covariant scalar field theories];
    Ribarič & Šušteršič a1503 [using the linearized Boltzmann integro-differential transport equations];
    Sakhnovich a1606.
  @ Schemes: Bender et al PRD(88),
    & Jones JMP(88),
    follow-up Brown PRD(88);
    Schoonderwoerd  & Bakker PRD(98),
    PRD(98) [covariant and light front];
    Meurice PRL(02) [improved method];
    Weinstein NPPS(06)ht/05 [adaptive];
    Frasca NPPS(09)-a0807 [strong-coupling expansion];
    Hollands & Olbermann JMP(09)-a0906 [in terms of vertex algebras];
    Brodsky & Hoyer PRD(11) [expansions in powers of \(\hbar\)];
    Finster JMP(14)-a1310 [fermionic projector framework];
    Cheung et al JHEP(15)-a1502 [replacing Feynman diagrams with recursion relations].
Specific Types of Theories
  @ Perturbatively non-renormalizable theories:
    Paban et al ZPC(87);
    Gegelia & Japaridze IJTP(00)ht/98 [new method].
  > Other theories:
    see covariant quantum gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 jun 2016