|  Special Types of Symplectic Structures | 
In General
  > s.a. hamiltonian dynamics [pataplectic]; poisson
  structure; symplectic structures [generalizations].
  @ Using boundary values: Soloviev JMP(93)ht,
    TMP(97)gq [for general relativity];
    Bering JMP(00)ht/98,
    PLB(00)ht/99.
  @ On null surfaces:
    Nagarajan & Goldberg PRD(85).
Covariant
  > s.a. hamiltonian dynamics; modified uncertainty
  relations; Peierls Brackets; symplectic structures in physics.
  * Idea: Introduce a symplectic structure
    on the space of histories for a field theory satisfying the field equations.
  @ General references:
    Kugo & Ojima PLB(78);
    in Woodhouse 81;
    Kuchař PRD(86);
    Zuckerman pr(86);
    Grishchuk & Petrov JETP(87);
    Barnich et al PRD(91);
    Hannibal IJTP(91);
    Torre JMP(92);
    Marolf AP(94)ht/93;
    Gotay et al phy/98 [GIMMsy 1];
    Mashkour IJTP(98),
    IJTP(01) [fields];
    Bérard et al IJTP(00);
    Fernández et al JMP(00) [gauge-invariant];
    Ozaki ht/00,
    ht/00;
    Cartas-Fuentevilla JMP(02)mp;
    Julia & Silva ht/02;
    Basu PRD(05)gq/04 [perturbative expansion and observables];
    Basini & Capozziello MPLA(05) [from conservation laws];
    Capozziello et al PiP(05)gq [hydrodynamic form];
    Montesinos JPCS(05)gq/06 [rev];
    Vitagliano JGP(09)-a0809;
    Khavkine IJMPA(14)-a1402 [rev];
    Sharapov a1412-conf;
    Kaminaga a1703 [field theory];
    Harlow & Wu a1906,
    Margalef-Bentabol & Villaseñor a2008 [with boundaries];
    Shi et al a2008 [with null boundaries].
  @ And quantization:
    Amelino-Camelia et al PAN(98)ht/97 [κ-deformed, and quantum gravity];
    Mostafazadeh CQG(03)mp/02 [inner product, Klein-Gordon fields];
    Benini MS(11)-a1111 [spin-1 fields on curved spacetimes];
    > s.a. geometric quantum mechanics; hilbert
      space; path integrals in quantum field theory.
  @ Relationships: Giachetta et al JPA(99)ht [and BRST];
    Rovelli LNP(03)gq/02 [and Hamilton-Jacobi equation];
    Mondragón & Montesinos IJMPA(04)gq/03  [parametrized, and observables];
    Forger  & Romero CMP(05)mp/04,
    Hélein a1106-conf,
    Forger & Salles a1501 [and multisymplectic].
  @ For brane dynamics: Cartas-Fuentevilla PLB(02)ht [p-branes in curved spacetime],
    PLB(02)ht [extendons];
    Carter IJTP(03)ht-conf;
    Escalante IJMPA(06)mp/04 [Dirac-Nambu-Goto p-branes].
  @ Other systems: Nutku PLA(00)ht [Monge-Ampère],
    ht/00-in [Korteweg-de Vries];
    Kouletsis & Kuchař PRD(02)gq/01 [strings];
    Cartas-Fuentevilla CQG(02)ht [topological defects in curved spacetime];
    Schreiber ht/03 [supersymmetric theories];
    Grant et al JHEP(05)ht ["bubbling anti-de Sitter"];
    Piña a0907 [charges];
    Nazaroglu et al PRD(11)-a1104 [topologically massive gravity];
    Alkac & Devecioglu PRD(12)-a1202 [new massive gravity];
    > s.a. BF theory; geometric quantization [Klein-Gordon theory];
      modified canonical general relativity; quantum particle
      and spinning particle models.
  @ Related topics: Guo et al PRD(03)gq/02 [diffeomorphism algebra];
    Reyes IJTP(04) [variational bicomplex, for Monge-Ampère equation];
    Ciaglia et al MPLA(20)-a2005 [in terms of contact geometry];
    > s.a. Alexandrov Sets; observables.
Multisymplectic and Polysymplectic Formalism > s.a. constrained
  systems; hamiltonian dynamics; symmetries.
  @ General references: Gotay in(91);
    Giachetta et al NCB(99)ht [BRST-extended],
    JPA(99);
    Echeverría-Enríquez et al JMP(00)mp;
    Hélein & Kouneiher ATMP(04)mp/02;
    Sardanashvily mp/02 [field theory, no brackets];
    Vey a1203-proc [notion of observable];
    Marrero et al JPA(15)-a1306 [reduction];
    Ryvkin & Wurzbacher a1804;
    Román-Roy a1807-ln [rev].
  @ Related structures:  Mangiarotti & Sardanashvily MPLA(99)ht [Koszul-Tate cohomology];
    Paufler RPMP(01)mp/00 [vertical exterior derivative],
    RPMP(01)mp [Gerstenhaber structures];
    Forger & Römer RPMP(01)mp/00,
    et al RVMP(03)mp/02,
    RPMP(03)mp/02 [Poisson brackets];
    Chen LMP(05) [variational formulation];
    Forger & Salles a1010 [Hamiltonian vector fields].
  @ De Donder-Weyl: Kanatchikov RPMP(98)ht/97,
    IJTP(98)qp/97 [general],
    gq/98-proc,
    RPMP(00)ht/99,
    IJTP(01)gq/00 [quantum gravity];
    Paufler & Römer RPMP(02)mp/01-in;
    Hélein mp/02-conf [and generalizations];
    Hélein & Kouneiher mp/04 [vs Lepage-Dedecker];
    Román-Roy Sigma(09)mp/05-conf [first-order field theories];
    Kanatchikov a0807-proc [generalized Dirac bracket];
    Kanatchikov JPCS(13)-a1302 [for vielbein gravity];
    Riahi & Pietrzyk a1912
      [for general relativity, and canonical Hamilton-Jacobi equation];
    > s.a. approaches to quantum field theory.
  @ For Yang-Mills theories: Vey a1303 [Maxwell theory];
    Hélein a1406;
    Ibort & Spivak a1506,
    a1511 [and constrained theories, with boundaries].
  @ Gravity: Ibort & Spivak a1605 [Palatini gravity, with boundaries];
    Gaset & Román-Roy JMP(18)-a1705 [Einstein-Hilbert gravity];
    Capriotti et al a1911 [Lovelock gravity];
    Klusoň & Matouš a2008 [f(R) gravity];
    McClain a2012-conf
      [polysymplectic approach and geometric quantization].
  @ Other classical  field theories: Günther JDG(87);
    Binz et al RPMP(02)mp,
    de León et al IJGMP(08)-a0803 [non-holonomic constraints];
    Munteanu et al JMP(04);
    Román-Roy et al JGM(11)-a0705 [k-symplectic, k-cosymplectic and multisymplectic, relationships];
    Prieto-Martínez & Román-Roy JGM(15)-a1402 [second-order field theories];
    de León et al a1409-book [k-symplectic and k-cosymplectic approaches];
    Sardanashvily a1505;
    > s.a. field theory [geometry].
  @ For quantum field theory:
    Kanatchikov IJTP(98)qp/97,
    RPMP(98)ht/98,
    ht/01;
    Bashkirov IJGMP(04)ht [BV quantization];
    Giachetta et al ht/04-proc.
  @ Other theories:
    Marsden et al JGP(01) [continuum mechanics];
    Hydon PRS(05) [for differential-difference equations];
    > s.a. BF theory.
Bi-Hamiltonian Structures
  > s.a. integrable systems; quantum systems.
  *  Idea: (M, Ω, H,
    Ω', H'), such that (Ω, H) and (Ω',
    H') induce the same Hamiltonian vector fields (equations of motion).
  * Useful tensor: Can define the 1-1 tensor
    Sab:=
    Ω'acΩbc;
    satisfies \(\cal L\)XH
    Sab = 0.
  * Conserved quantities: They can be
    obtained by K0:= ln |det S|;
    Kn:= (1/n)
    tr Sn.
  * Nijenhuis tensor: Defined using S, by
Nabm:= Sac ∇c Sbm − Sbc ∇c Sam − Scm (∇a Sbc − ∇b Sac) ,
    which is Lie-derived by XH;
    The system is integrable if N = 0.
  @ Bi-Hamiltonian vector fields: Magri JMP(78);
    Fuchssteiner PTP(82);
    Marmo et al NCB(87);
    in Das & Okubo AP(89).
  @ Nijenhuis tensors:
    Bogoyavlenskij DG&A(06) [algebraic identities].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 31 jan 2021