|  Computational Physics – Specific Areas | 
Classical Mechanics > s.a. Boltzmann Equation;
  formulations of classical mechanics.
  @ Books:
    Greene 95 [Maple];
    Wilkins 99;
    Lynch 09 [dynamical systems, Maple];
    Hoover & Hoover 11 [irreversibility, chaos];
    Malthe-Sørenssen 15 [II, Python];
    Hentschke 17 [Mathematica].
  @ General references: Timberlake & Hasbun AJP(08)apr;
    Skokos & Gerlach PRE(10)-a1006,
    Gerlach & Skokos a1008-proc
      [variational equations of Hamiltonian systems, symplectic integration];
    Ripperda et al ApJS(18)-a1710 [relativistic particle integrators];
    Takato & Vallejo MCS(19)-a1805 [packages for symbolical, numerical and graphical analysis].
  @ Simple systems: Müller & Frauendiener AJP(13) [charged particles constrained to a curved surface];
    Bensky & Loelter AJP(13)mar [bead on a wire].
  @ Non-linear systems:
    Enns & McGuire 00 [with Maple],
    01 [with Mathematica];
    Steeb 08;
    Morante & Vallejo EJMT-a1301 [chaotic systems with Maxima].
  @ Thermodyamics and statistical mechanics: Newman & Barkema 99 [Monte Carlo];
    Tobochnik et al AJP(05)aug
      [T and chemical potential, Monte Carlo];
    Krauth 06;
    Tobochnik & Gould AJP(08)apr;
    Tuckerman 10;
    Sander 13 [with Python];
    Erban PRS(14) [molecular and Brownian dynamics, multi-scale approach];
    Binder & Heermann 19 [Monte Carlo];
    Landau & Binder 21 [Monte Carlo];
    > s.a. Maxwell-Boltzmann Distribution;
      statistical mechanics [simulations].
Field Theories
  > s.a. dirac fields; lattice theory.
  @ General references: Ehrlich 95;
    Peeters ht/07,
    Brewin CPC(10)-a0903 [Cadabra, symbolic and tensor algebra];
    > s.a. coordinates.
  @ Wave equations: van Putten PRD(97)gq [non-linear, general relativity];
    Iriondo & Reula PRD(02)gq/01 [spherical scalar];
    Rossmanith et al JCP(04) [hyperbolic systems on curved manifolds];
    Visher et al JCP(04) [1+1, stable high-order discretization];
    Anderson & Kimn CP(07) [spacetime finite-element approach];
    VanWyk 08 [and differential equations in general];
    Bernardini & Pirozzoli JCP(09) [Runge-Kutta method];
    > s.a. computing languages [Matlab].
  @ Maxwell theory:
    Cockburn et al JCP(04) [Galerkin method];
    Rieben et al JCP(05) [unstructured grid];
    Collino et al JCP(06) [mesh refinement for FDTD solution];
    > s.a. electromagnetism in curved spacetime;
      magnetism [magnetohydrodynamics].
  @ Fluids: Zheng et al JCP(05) [multiphase flow, adaptive];
    Zanotti & Dumbser CPC-a1312 [special-relativistic hydrodynamics];
    Radice et al CQG(14)-a1312 [general-relativistic hydrodynamics];
    Chung 14;
    Tucker 16;
    Sengupta et al ed-16 [transitional and turbulent flows];
    Williams & Lind a2006 [smoothed particle hydrodynamics, quantum computing];
    Hinch 20 [introductory];
    > s.a. H-Theorem; turbulence.
Gravity-Related Areas > s.a. numerical relativity
  and models in numerical relativity; regge
  calculus; Symplectic Integrators.
  @ General references:
    MacCallum IJMPA(02) [computer algebra];
    Vulcanov & Vulcanov cs/04-conf,
    Lake phy/05 [Maple + GrTensorII libraries];
    Moylan et al gq/05-MG10 [GRworkbench];
    Tertychniy a0704 [GR_EC];
    Shirokov a0711 [GRACOS code];
    Luminet JPCS(14)-a1309 [overview and examples];
    Wainwright et al JCAP(14)-a1312 [bubble collisions];
    Hahn & Angulo MNRAS(16)-a1501 [adaptively refined phase-space element method];
    > s.a. geometry; newtonian gravity.
  @ Astrophysics:
    Spurzem ap/97-proc [N-body systems];
    Kalashnikov gq/01 [Maple];
    Evans et al PRD(05) [relativistic, adaptive mesh];
    Spera a1411-proc
      [N-body systems, using Graphics Processing Units];
    Boekholt & Portegies Zwart a1411 [N-body systems, reliability of simulations];
    Stein JOSS(19)-a1908 [Kerr quasinormal modes].
  @ Cosmology:  Moldenhauer et al AJP(13)jun-a1212 [open-source computational tools for cosmological simulations];
    > s.a. cosmic strings.
  @ Quantum gravity: Ambjørn et al 97;
    Hamber gq/98;
    Glaser & Steinhaus Univ(19)-a1811 [Nordita workshop];
    > s.a. quantum regge calculus.
Quantum Theory > s.a. pilot-wave interpretation;
  quantum mechanics [texts]; schrödinger equation.
  @ General references: Feagin 94 [Mathematica];
    Horbatsch 95 [Maple];
    Ishikawa JPA(02) [accurate method];
    Dowling et al JCP(07)qp/05;
    Hirayama & Holdom CJP(06)ht/05,
    et al CJP(06)hl/05 [classical simulation];
    Latorre JPA(07) [and entanglement entropy];
    Schuch et al NJP(08) [simulating quantum evolution];
    Dakic et al PRL(08)
      [simulating quantum measurements with hidden-variable states];
    Anastassi & Simos PRP(09) [multistep methods];
    Steeb & Hardy 10 [computer algebra];
    Dubeibe IJMPC(10)-a1005 [wave-packet evolution];
    Schmied a1403-ln [using Mathematica].
  @ Quantum simulation: Jordan et al QIC-a1112 [scattering in scalar quantum field theories];
    Georgescu et al RMP(14);
    Muller & Blume-Kohout ACSN(15)-a1507 [rev];
    Whitfield et al PRA(16)-a1605 [fermionic systems];
    Hirayama a1912
      [quantum field theory, classical simulation];
    Farrelly & Streich a2002 [discretization of quantum field theories].
  @ Specific systems: Hastings PRB(07)-a0706 [1D systems at finite temperature];
    Cabrera et al PRA(16)-a1409
      [spin-1/2 relativistic open quantum systems undergoing decoherence].
  @ Event-by-event simulations: De Raedt a0712-conf;
    De Raedt et al PhyE(09)-a0908.
Related Topics
  @ Other areas:
    Hocquet & Wieber a1811 [computational chemistry, hist].
  > Techniques: see computational physics;
    monte carlo method; programming languages
    [e.g., Maple, Mathematica, Matlab].
  > Subjects: see combinatorics;
    condensed-matter physics; integral equations;
    random and stochastic process.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 21 apr 2021