|  Quantum Field Theory | 
In General > s.a. Second Quantization.
  * Idea: A physical theory of
    particles and their interactions, based on the connection between properties
    of quantum fields and particles, incorporating  special relativity and quantum
    mechanics; 0+1-dimensional quantum field theory is equivalent to quantum mechanics.
  * Motivation: Believed to be
    the correct fundamental description of all interactions, since there are
    "adequate" (renormalizable, phenomenologically reasonable) quantum
    field theories for all of them but gravity; No evidence against it yet; Also,
    relativistic effects imply that 1-particle wave functions don't have consistent
    probabilistic interpretations.
  * Allowed fields: Given by linear
    representations of the Lorentz group, labelled by m and s.
  * Classical picture:
    Interactions in terms of forces and potentials are recovered in the static
    limit; > s.a. interaction.
  * Issues: The no-interaction
    result proved in Haag's theorem; The need for renormalization.
   Specific aspects:
    see approaches; formalism and techniques;
    phenomenology and effects; types of quantum field theories.
 Specific aspects:
    see approaches; formalism and techniques;
    phenomenology and effects; types of quantum field theories.
References
  > s.a. astrophysics [applications]; quantum gauge theories;
  relativistic quantum mechanics; teaching.
  @ General: Schwinger PR(51);
    Heisenberg RMP(57);
    Schroer ht/06
      [existence of interacting quantum field theory].
  @ Intros, reviews: Crewther ht/95;
    Buchholz & Haag JMP(00)ht/99;
    Dine hp/00-conf [applications];
    Fredenhagen et al LNP(07)ht/06 [status].
  @ Mathematical: Edwards IJTP(81);
    Federbush BAMS(87)mar [survey];
    Araki 99;
    Ticciati 99;
    Borcherds & Barnard mp/02-ln;
    Abdesselam m.CO/02;
    Zeidler 06;
    Chen a0803 [and differential geometry];
    Dimock 11;
    Dereziński & Gérard 13
      [r CP(14)#2];
    Rinehart a1505 [foundations, Hamiltonian formulation].
  @ II: Mandl 59;
    Mandl & Shaw 93;
    Han 04 [esp quarks and leptons];
    Walecka 10;
    Ohlsson 11;
    Klauber 13 [student-friendly];
    Setlur 13 [and classical fields];
    Lancaster & Blundell 14 [for the gifted amateur];
    Becchi & Ridolfi 14 [and the standard model];
    Ilisie 16;
    Redmount a1908 [at the introductory level].
  @ III: Wentzel 49;
    Schweber 61;
    Bjorken & Drell 64,
    65;
    Jost 65;
    Dirac 66;
    Berezin 66;
    Sakurai 67;
    Ziman 69;
    Beresteski et al 71;
    Lifshitz & Pitaevskii 71;
    Coleman ln(76)-a1110 [Physics 253a lecture notes];
    Nash 78;
    Bogoliubov & Shirkov 80;
    Itzykson & Zuber 80;
    Lee 81;
    Bogoliubov & Shirkov 83;
    DeWit & Smith 86;
    Chang 90;
    Greiner 90;
    Brown 92;
    Gross 93;
    Kaku 93;
    Sterman 93;
    Peskin & Schroeder 95;
    Weinberg 95-96;
    Greiner & Reinhardt 96;
    Elbaz 98;
    Huang 98;
    Siegel ht/99-text;
    Stone 00;
    Capri 02;
    Bytsenko et al 03 [techniques];
    DeWitt 03;
    Zee 03;
    Srednicki ht/04,
    ht/04 [textbook, parts 1+2];
    Lahiri & Pal 05;
    Maggiore 05;
    Nair 05;
    Álvarez-Gaumé & Vázquez-Mozo
      ht/05-ln,
    12;
    Srednicki 07;
    Das 08;
    Banks 08;
    Flory et al a1201-ln
      [stop worrying about the mathematical shape of the theory];
    in Scheck 13;
    van Baal 13;
    Shchesnovich a1308-ln [second-quantization method];
    Coleman 16 [lectures];
    D'Auria & Trigiante 16;
    Manoukian 16;
    Padmanabhan 16;
    Baulieu et al 17;
    Casalbuoni 17;
    Pauchy Hwang & Wu 18;
    Gelis 19;
    Năstase 19;
    Cline a2005-ln [with problems].
  @ Texts, axiomatic:
    Bogoliubov, Logunov & Todorov 75;
    Strocchi 93.
  @ Texts, topological methods: Ryder 85;
    Nash 91;
    Huang 92;
    Schwartz 93;
    Bandyopadhyay 03;
    > s.a. topology in physics.
  @ Texts, condensed matter: Abrikosov et al 75;
    Wen 04 [and many-body];
    Schakel 08 [effective theories];
    Altland & Simons 10;
    Mudry 14;
    Shankar 17;
    > s.a. condensed matter.
  @ Texts, particle physics: Hatfield 92 [including strings];
    Shifman 12 [monopoles, instantons, supersymmetry, etc,
      r CP(12)#5];
    Kleinert 16;
    Schwartz 13,
    Han 14 [and the standard model].
  @ Texts, other emphasis: Prykarpatsky et al 02 [and non-linear optics];
    Grensing 13 [and non-commutative geometry];
    Lam 15 [techniques].
  @ Problems:
    Atkinson & Johnson 04; 
    Radovanović 06.
  @ Collections: Batalin et al ed-87.
  > Online resources:
    see Sidney Coleman lectures.
Interpretations and Other Conceptual Aspects
  > s.a. cellular automata; formalism and techniques;
  klein-gordon fields; particle models.
  @ Conceptual: Dirac PRS(42);
    Auyang 95;
    de Souza ht/96 [and classical field theory];
    Jackiw ht/96 [effectiveness and reservations];
    Tian 96;
    news PT(96)jun [evidence];
    Cao 99;
    Jackiw ht/97;
    Schnitzer phy/97;
    Wilczek RMP(99)ht/98;
    Huggett BJPS(00);
    Haag ht/00;
    Ruetsche PhSc(02)jun [Hilbert space and algebraic];
    Zeh PLA(03)qp/02 [fields and particles];
    Strocchi FP(04)ht-in [issues];
    Hollands & Wald GRG(04)gq-GRF [not just quantum mechanics of low-energy degrees of freedom];
    Hättich 04 [Whiteheadian interpretation];
    Krekora et al PRA(06) [difficulties];
    Baker BJPS(09) [against field interpretations];
    Fraser PhSc(09)oct;
    D'Ariano AIP-a1001 [and quantum computation];
    Schroer EPJH(13)-a1101 [fluctuations and the Einstein-Jordan conundrum],
    SHPMP-a1107 [localization];
    Sassoli de Bianchi AJP(13)-a1202 [quantum "fields" are not fields];
    Zeh ZfN-a1304;
    Egg et al a1701 [on the Fraser-Wallace debate];
    Cao 19;
    Pavšič 20 [misconceptions];
    Skullerud a2011-MS.
  @ Ontology: Kuhlmann et al ed-02;
    Deckert et al a1608 [based on the Dirac sea];
    Durham a1807;
    Lazarovici EJPS(18)-a1809 [against fields, superiority of a pure particle ontology].
  @ Historical: Schroer FP(10)-a0905 [importance of crossing property];
    Close 11;
    > s.a. history of quantum theory.
  @ Philosophical: Brown & Harré ed-88;
    Teller PhSc(90)dec, p95;
    Huggett & Weingard PhSc(94)sep;
    Weinberg ht/97;
    Smeenk & Myrvold SHPMP(11);
    Öttinger a1509-book,
    18.
  @ Pilot-wave interpretation:
    Bell PRP(86);
    Vigier FP(91)
      [non-linear solitons piloted by solutions of linear equations];
    in Bohm & Hiley 93;
    Holland PRP(93);
    Pinto-Neto & Santini GRG(02)gq/00;
    Horton et al FP(02) [Klein-Gordon theory];
    Potel et al PLA(02)qp [random noise];
    Nikolić FPL(04)qp/02 [bosonic quantum field theory];
    Nikolić FPL(05)qp/03 [fermions],
    PLA(06)ht/05 [and multi-fingered time],
    EPJC(05)ht/04,
    IJMPD(06)ht [and covariance];
    Dürr et al JPA(03) [trajectories, creation/annihilation],
    PRL(04)qp/03;
    Horton & Dewdney JPA(04) [Klein-Gordon, covariant];
    Struyve & Westman in(06)qp,
    PRS(07)-a0707 [beables for bosonic degrees of freedom, QED];
    Tumulka JPA(07)qp/06;
    Colin & Struyve JPA(07)qp [using Dirac sea];
    Struyve RPP(10)-a0707 [beables];
    Schmelzer FP(10)-a0904 [difficulty from non-significant overlaps];
    Nikolić IJMPA(10)-a0904;
    Struyve JPCS(11)-a1101 [overview];
    > s.a. dirac fields.
  @ Hidden variables, other:
    Khrennikov NCB(06)ht-in.
  @ Classical statistical models:
    Wetterich a1111 [for fermions];
    Khrennikov JRLR-a1412
      [probabilities of photon detection from classical Brownian motion].
  @ Interpretations, other: Huggett & Weingard PhSc(96)jun [re Teller 95];
    Tommasini JHEP(02)ht [local, causal, statistical];
    Colin PLA(03)qp [realistic, deterministic, fermions];
    Larsson ht/07 [alternative, quantum jet theory];
    Ruetsche 11;
    Oldofredi & Öttinger a2011 [dissipative approach];
    > s.a. approaches; interpretations of quantum mechanics [modal];
      quantum gravity; Relational Blockworld;
      wave-function collapse.
  @ Related topics: Todorov BulgJP-a1311 [remarks];
    Linde EJP(17)-a1907 [visualizing quantum fields].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 apr 2021