|  Quantum Field Theory – Types of Theories | 
In General > s.a. generalized theories [including non-local, deformed,
  and theories with a fundamental length]; types of fields [including polymer].
  * Free vs interacting:
    A field is free if the representation describing a many-particle system is
    the tensor product of the corresponding single-particle representations.
  @ General references: Lev JPA(99)qp/98;
    Ratsimbarison a0706/FizB [construction of probabilistic theories];
    Dereziński JMP(14)-a1307 [with classical interactions];
    Weinberg a2010
      [allowed massless particles described by tensor and spinor-tensor fields].
  @ Scalar theories (spin-0): Harrivel mp/06 [perturbative expansion];
    Gielerak a1803 [not quasi-free, obeying all Wightman axioms];
    > s.a. klein-gordon theory.
  @ Vector theories (spin-1): Blommaert et al JHEP(18)-a1801 [entanglement structure];
    > s.a. quantum gauge theories and QED.
  @ 0+1: Boozer EJP(07) [as toy model].
  @ 1+1: Dereziński & Meissner LNP(06)mp/04 [massless];
    Schroer ht/05-en [rev],
    AP(06)ht/05 [as testing ground];
    Dorey et al ed-JPA(06) [low-dimensional];
    Falco a1208-conf [and applications to statistical  mechanics];
    Iraso & Mnev CMP(19)-a1806 [Yang-Mills theories with corners].
  @ 2+1: Robinson et al JMP(09)-a0903 [spin-1/2 symplectic fermions].
  @ Space of quantum field theories: Douglas a1005;
    Balasubramanian et al a1410
      [relative entropy and proximity of quantum field theories].
Diffeomorphism-Invariant or Background-Independent Theories
  > s.a. algebraic and axiomatic approaches; parametrized theories.
  * Locally covariant quantum field theory:
    A theory is described as a functor from a category of spacetimes to a category of
    *-algebras; > s.a. gauge groups.
  @ General references: Fredenhagen & Haag CMP(87);
    Kuchař in(88);
    Horowitz CMP(89) [exactly soluble];
    Rovelli NPB(93),
    JMP(95)gq [and model for quantum geometry];
    Thiemann gq/93,
    CQG(95)gq/99;
    Salehi IJTP(97) [dynamics formalism];
    Baez & Krasnov JMP(98) [with fermions];
    Conrady et al PRD(04) [vacuum];
    Fredenhagen ht/04-proc;
    Dreyer ht/04;
    Balachandran et al IJMPA(09)ht/06 [on the Groenewold-Moyal plane];
    Campiglia et al PRD(06)gq [uniform discretizations];
    Pinamonti CMP(09) [conformally invariant];
    Neiman CQG(09)-a0901 [degrees of freedom over finite spatial regions];
    Rovelli JPCS(11)-a1010 [simple quantum gravity model].
  @ Parametrized theories: Laddha & Varadarajan PRD(08)-a0805,
    PRD(11)-a1011 [2D scalar, as model for 4D gravity];
    Sengupta CQG(14)
    + CQG+(14) [2D, asymptotically flat scalar].
  @ Locally covariant: Fewster & Verch AHP(12)-a1106,
    Fewster PTRS(15)-a1502 [and "the same physics in all spacetimes"];
    Fewster & Schenkel AHP(14)- a1402 [with external sources];
    > s.a. approaches to quantum gravity; renormalization.
  @ Scalar fields: Husain PRD(93)gq [and loop-based observables];
    Varadarajan PRD(04)gq [path integral];
    Sahlmann CQG(07)gq/06 [diffeomorphism-invariant Hilbert space].
  > Specific types: see quantum gauge theories and
    QED; quantum gravity; topological theories.
Other Types of Theories
  > s.a. boundaries in field theory; discrete
  spacetime; quantum field theory in curved spacetime [including scalar, spin-1, spin-3/2].
  @ Exactly solvable theories:
    Ushveridze MPLA(98) [quasi-exactly solvable];
    Brodsky et al AP(02) [and Pauli-Villars fields].
  @ Coupled to atoms: 
    Hu & Raval qp/97;
    Retamal et al PLA(06) [entanglement];
    > s.a. Dicke Model; Friedrichs Model.
  @ Coupled to atoms, finite T:
    Sowiński a0901;
    Khanna et al PRA(10)-a0910 [thermal effects, and stability].
  @ Theories with S unbounded below: 
    Greensite & Halpern NPB(84) [Euclidean quantum theory];
    Zavialov et al TMP(96).
  @ UV-finite theories:
    Lemes et al JPA(01) [criterion];
    Moffat a1104 [gauge invariance in UV-complete theories].
  @ Ultralocal theories: Klauder CMP(70),
    APA(71) [quantization];
    Klauder JPA(01)qp/00 [and reparametrization-invariant];
    Varadarajan CQG(17)-a1609 [and propagation];
    Klauder a2007 [quantum gravity].
  @ Non-Lagrangian theories:
    in Kaparulin JMP(10)-a1001 [Lagrange-anchor construction].
  @ Group field theories: Gurau CMP(11)-a0912 [fermionic, with color symmetry];
    Rivasseau a1209-conf [tensor group feld theories];
    Krajewski a1210-ln;
    Oriti a1211-proc [quantum geometry];
    Baratin et al PRD(14)-a1405 [modification];
    Kegeles et al CQG(18)-a1709 [inequivalent coherent state representations];
    > s.a. approaches to quantum gravity;
      renormalization.
  @ Other types of theories: Segal JMP(60),
    JMP(64) [non-linear];
    Grigore JMP(95) [free];
    Chalmers JHEP(98)ht/97 [non-polynomial];
    Maiani & Testa AP(98) [unstable];
    Brouder ht/03 [degenerate systems];
    Benini et al AHP(13)-a1210 [bosonic and fermionic field theories on affine bundles];
    Freed & Teleman CMP(14)-a1212 [relative quantum field theory];
    Strauss et al a1407 [classically unstable];
    Underwood & Valentini PRD(15)-a1409 [relic non-equilibrium systems];
    Barbero et al CQG(15)-a1501 [coupled to point masses];
    Aashish & Panda PRD(18)-a1803 [rank-2 antisymmetric fields, effective action approach];
    Runkel & Szegedy a1807 [area-dependent theories, with defects];
    > s.a. conformal invariance; integrable theories;
      momentum [in curved momentum space].
  > Specific types: see
    composite systems; effective actions;
    Lifshitz-Type Theories; many-particle
    quantum systems; supersymmetric field theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 oct 2020