|  Distributions | 
In General
  > s.a. [analysis]; functional analysis.
  * Idea: A type of
    generalized function; The theory was introduced by Dirac and formalized
    by Schwarz, motivated by quantum physics.
  $ Def: An element of the
    dual space of the Schwarz space \(C_0^\infty({\mathbb R}^n)\).
  * Schwarz space:
    The space of all (test or smearing) functions f :
    \(\mathbb R\)n →
    \(\mathbb R\) which are infinitely differentiable and fall off fast
    enough at infinity (e.g., compact support, or faster than any power);
    It is used to define distributions.
  @ Books: Schwartz 50,
    51 [original];
    Gel'fand & Shilov 64,
    68,
    67;
    Gel'fand & Vilenkin 64;
    Gel'fand, Graev & Vilenkin 66;
    Lighthill 64;
    in Roos 69;
    in Adams 75, ch1;
    Richards & Youn 90;
    Duistermaat & Kolk 10;
    El Kinani & Oudadess 10.
  @ General references: Estrada & Fulling JPA(02) [defined by singular functions];
    in Waldmann a1208-ln [on manifolds].
  @ Products: Colombeau 83,
    BAMS(90);
    Oberguggenberger 92;
    Köhler CQG(95);
    Bagarello JMAA(95)-a0904 [1D, and δ function],
    JMAA(02)-a0904 [1D, and quantum field theory];
    Steinbauer & Vickers CQG(06)gq;
    Gsponer EJP(09)mp/06 [intro];
    Droz-Vincent JMP(08);
    Bagarello JMAA(08)-a0904 [any dimension, and δ-function];
    Skákala a0908,
    PhD-a1107 [for tensorial distributions];
    Kim JMP(10)
      [multiplication and convolution of distributions and ultradistributions];
    Nigsch & Sämann a1309
    [overview, and applications in general relativity];
    > s.a. Colombeau Algebra.
  @ Properties: Smirnov TMP(07)mp/05 [localization properties].
  @ Ultradistributions:
    Bollini et al TMP(99),
    Bollini & Rocca TMP(04),
    TMP(04),
    et al IJTP(07)ht/06 [convolution]. 
  @ Generalizations: Kunzinger & Steinbauer
      AAM(02)m.FA/01 [for sections of vector bundles, tensors],
    TAMS(02)m.FA/01 [pseudo-Riemannian geometry];
    Kunzinger MfM(02)m.FA/01,
    et al PLMS(03)m.FA/02 [manifold-valued];
    Dragovich ITSF(98)mp/04 [Adelic];
    Colombeau mp/07,
    a0708 [adapted to non-linear calculations];
    > s.a. Extrafunctions;
      tensor fields [distributional].
  @ Applications: Skinner & Weil AJP(89)sep [electromagnetism, dipoles];
    Gsponer EJP(07) [spherical symmetry, electrodynamics];
    > s.a. diffeomorphisms; particle models
      [pointlike electron]; quantum field theory techniques [operator-valued distributions];
      solutions in general relativity with matter [distributional sources];
      types of metrics [distributional curvature].
Dirac Delta Function
  > s.a. fractional analysis [fractional derivative];
  fourier transform.
  * Properties:
    It satisfies ∇2
    r−1
    = −4π δ(r) in 3D.
  * Approximations:
    the following 1-parameter families of functions approximate
    δ(x) as L→∞,
δL(x):= \(\int_{-L/2}^{L/2}\) dk exp{i2πkx} πxL)/(πx) and \((2L)^{-1}{\rm e}^{-|x|/L}\) .
* Result: It can be represented using the non-extensive-statistical-mechanics q-exponential function eqix = [1+(1−q)ix]1/(1−q) as
δ(x) = (2−q)/(2π) \(\int_{-\infty}^{+\infty}\) dk eq−ikx ; here, q ∈ [1, 2] and q = 1 is the usual exponential representation .
  @ General references: Jackson AJP(08)-a0708 [attribution];
    Towers JCP(09) [discretized via finite-difference methods];
    Jáuregui & Tsallis JMP(10)-a1004,
    Mamode JMP(10),
    Plastino & Rocca JMP(11)-a1012 [and q-exponential function];
    Katz & Tall FS(12)-a1206 [19th-century roots];
    Kempf et al JPA(14)-a1404 [properties and applications in quantum field theory];
    Sicuro & Tsallis PLA(17)-a1705
      [generalized representation in d dimensions in terms of q-exponential functions].
  @ Converging sequences: Aguirregabiria et al AJP(02)feb; Boykin AJP(03)may [sequences converging to δ'(x)];
    Galapon JPA(09).
  @ Uses: Blinder AJP(03)aug [re fields of points charges and dipoles];
    Bondar et al AJP(11)apr-a1007 [differentiation, and use in quantum mechanics].
  @ Generalizations:
    Rosas-Ortiz in(06)-a0705 [Dirac-Infeld-Plebański improper delta function];
    Ducharme a1403 [complex, and the quantized electromagnetic field];
    Zhang a1607 [on vector spaces and matrix spaces].
Finite Part Distribution
  > s.a. integration theory [finite-part integration].
  $ Def: The finite part of a function
    f(x) is the distribution defined by FP \(\int_{-\infty}^\infty\)
  φ(x) f(x) dx = non-divergent terms
    in the power-series expansion around ε = 0 of
    \(\int_{-\infty}^{-\epsilon}\) φ(x) f(x) dx
    + \(\int_\epsilon^\infty\) φ(x) f(x) dx.
  * Examples: For the
    case of r−2, with
    a second-order pole at x = 0, this means
FP \(\int_0^\infty\) r−2 f(r) dr = −f(0) + \(\int_0^1\) r−2 [f(r) − f(0) −rf '(0)] dr + \(\int_1^\infty\) r−2 f(r) dr ;
    i.e., expand f(r) in series around the singular point
    of φ(r), and give a prescription for how to integrate
    those terms which cause trouble (in the above case, the first two).
  @ References: in Blanchet & Faye JMP(00)gq,
    JMP(01)gq/00 [and pointlike particles];
    Seriu AOT-a1003 [asymptotic principal values];
    Galapon JMP(16)-a1512 [Cauchy Principal Value and finite part integral as values of absolutely convergent integrals].
  > Online resources:
    see Wikipedia pages on the Hadamard finite part and Cauchy principal value.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 4 dec 2020