|  States in Quantum Field Theory | 
In General > s.a. entanglement;
  Lamb Shift; photon;
  Plasma;  states in quantum mechanics.
  @ Space of states: Kijowski RPMP(76) [as a direct limit];
    Field & Hughston JMP(99) [geometry, coherent states].
  @ Using projective techniques: Okołów CQG(13)-a1304;
    Lanéry & Thiemann JGP(17)-a1411,
    JGP(17)-a1411,
    a1411
      [projective limits, states as projective families of density matrices];
    Kijowski & Okołów JMP(17)-a1605 [modified construction].
  @ Criteria for physically reasonable states: Lechner & Sanders a1511 [modular nuclearity].
Semiclassical States, Classicality > s.a. Classicalization;
  decoherence; semiclassical quantum mechanics.
  * Idea: Two ways of obtaining the
    classical limit of a quantum field theory are to do a semiclassical expansion of
    the generating function for correlation functions, and to use 't Hooft's approach
    and calculate the N → ∞ limit of a Yang-Mills theory.
  @ General references:
    Komar PR(64) [macroscopic distinguishability];
    Hepp CMP(74) [correlation functions];
    Maslov & Shvedov TMP(98)ht/97 [divergences and renormalization];
    Anastopoulos IJTP(99);
    Lisewski qp/99 [hydrodynamic limit];
    Shvedov ht/01,
    JMP(02)ht/01;
    Aarts & Berges PRL(02) [far from equilibrium];
    Honegger & Rieckers LMP(03) [semiclassical bosonic states];
    Park LMP(07)-a0705 [semiclassical theories and Frobenius manifolds];
    Mahajan & Padmanabhan GRG(08)-a0708,
    GRG(08)-a0708 [and particle production];
    Yokomizo & Barata JMP(09)-a0907 [non-uniqueness of classical limits and particles vs field];
    Burgess et al JCAP(10)-a1005 [breakdown of semiclassical methods];
    González-Arroyo & Nuevo PRD(12)-a1205 [quantum corrections to time evolution];
    Marian & Marian PRA(13)-a1308 [relative entropy as an exact measure of non-Gaussianity];
    Cattaneo et al a1311-ln
      [semiclassical quantization, and Abelian Chern-Simons theory];
    Varela a1404 [as decoherence-free-subspace].
  @ Coupled / hybrid quantum and classical fields:
    Juárez-Aubry et al a1907 [initial-value problem].
  @ Quantum to classical transition:
    Lombardo PhD(98)gq;
    Everitt et al PRA(09)-a0710;
    > s.a. classical limit of quantum mechanics.
  @ Degree of classicality:
    Malbouisson & Baseia PS(03).
  @ And phase transitions: Lombardo et al IJTP(02)hp,
    IJTP(02)hp;
    Kim & Lee PRD(02);
    Rivers & Lombardo BJP(05)ht/04-conf,
    IJTP(05)ht/04-proc;
    Lombardo et al PLB(07)hp.
  @ Coarse-graining: Lombardo & Mazzitelli PRD(96) [and decoherence];
    Anastopoulos PRD(97)ht/96,
    gq/98.
  @ Perturbative approach: Shvedov ht/04,
    ht/05 [axiomatic].
  @ Field in semiclassical background: Naudts et al ht/02 [model for electromagnetism in quantum spacetime].
  @ Pseudoclassical paths: Oaknin PRD(03)ht [for fermions].
  > Special states: see coherent states;
    field theory [localized states]; Squeezed States.
  > Related topics: see game theory [matter-field interaction]; 
    phenomenology; renormalization; scattering.
Other Types of States
  > s.a. fock space [number states]; vacuum.
  * Non-equilibrium states: The best-known
    applications are to electronic transport in normal metals and superconductors.
  * Non-linear generalized geometric states:
    State that interpolate between number states and non-linear pure thermal states.
  @ Bound states:
    Shebeko & Shirokov PPN(01)nt;
    Camblong & Ordóñez IJMPA(04)ht/01 [path integral];
    Liu a1811 [new formalism].
  @ Thermal states: Khanna et al 09;
    Küskü PhD(08)-a0901 [almost-equilibrium states in FLRW spacetimes];
    Solveen CQG(10)-a1005 [local thermal equilibrium in flat and curved spacetimes];
    Ortíz a1102
      [on cylindrically compactified 2D Minkowski space];
    Sanders IJMPA(13)-a1209 [linear scalar field in stationary spacetimes];
    Solveen CQG(12)-a1211 [in curved spacetimes];
    Gransee et al a1508,
    ch(16)-a1602 [local thermal equilibrium states];
    > s.a. thermodynamic systems.
  @ Non-equilibrium states: Niemi PLB(88);
    Niégawa ht/98 [perturbation theory];
    Buchholz et al AP(02)hp/01;
    Berges NPA(02),
    NPA(02)hp [and classical field theory];
    Berges AIP(04)hp [intro];
    Berges & Borsányi EPJA(06)ht/05-in [from first principles];
    Zanella & Calzetta ht/06 [renormalization and damping];
    Gasenzer & Pawlowski PLB(08) [functional renormalization-group approach];
    Rammer 07;
    Calzetta & Hu 08;
    Kamenev 11 [functional approach];
    Hack & Verch a1806 [interacting Klein-Gordon field, steady-state].
  @ Other states: Nieto PLA(97)qp/96 [displaced / squeezed number states];
    Sebawe Abdalla et al PS(08) [non-linear generalized geometric states];
    Banisch et al CQG(13)-a1205 [states on timelike hypersurfaces].
Specific Theories
  > s.a. dirac theory; modified electromagnetism;
  QED; modified QED.
  @ Scalar field:
    Shvedov ht/04 [covariant approach].
  > Semiclassical theories: see
    qed phenomenology; semiclassical
    general relativity; semiclassical quantum gravity.
Related Topics and Properties > s.a. quantum fields
  in curved spacetime [Hadamard and other states] and effects in
  curved spacetime [vacuum].
  @ Degree of polarization: Klimov et al PRA(05)qp [as distance from set of unpolarized states].
  > Other topics:
    see effective quantum field theories;
    klein-gordon fields [symmetry reduction].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 25 jul 2019