|  Anomalies in Quantum Theory | 
In General > s.a. heat [heat kernel].
  * Idea: The breakdown, upon
    quantization of a theory, of conservation laws that hold classically; In
    field theory, if \(j^a\) is a classically conserved current built from the
    dynamical variables, \(\nabla_{\!a}\,j^a = 0\), we have an anomaly if the
    corresponding quantum operator equation is not satisfied.
  * In quantum mechanics: There
    are at least two cases in quantum mechanics, the 2D δ-function interaction
    and the 1/r 2 potential.
  * And path integrals: In the
    quantum path-integral formulation of a field theory, an anomaly arises when
    the functional measure is not invariant under a symmetry transformation of
    the Lagrangian.
  * Consequences: They pose
    consistency problems if they appear in quantized gauge theories.
References > s.a. early-universe
  cosmology [baryogenesis]; regularization.
  @ Intros, reviews: Jackiw in(88);
    Bertlmann 96;
    Zinn-Justin LNP(05)ht/02 [especially chiral];
    Fujikawa & Suzuki 04 [and path integrals];
    Adler ht/04-en;
    Harvey ht/05-ln;
    Bastianelli & van Nieuwenhuizen 06 [r CQG(07)];
    Bilal a0802-ln.
  @ General references: Aldaya et al ht/97-conf [algebraic vs topological, group quantization];
    Fujikawa hl/00-proc,
    IJMPA(01)ht/00 [and regularization];
    Grigore a1011-conf [second-order anomalies and off-shell fields];
    Monnier a1903-proc
    [anomaly field theory and higher-dimensional field theory functor].
  @ In quantum mechanics: Holstein AJP(93)feb;
    Kirzhnits & Shpatakovskaya TMP(96)qp/99;
    Coon & Holstein AJP(02)may-qp [1/r 2 potential];
    Holstein AJP(14)jun [2D δ-function potential].
  @ Consistency conditions:
    Wess & Zumino PLB(71);
    Becchi et al AP(76);
    Grigore a1804-conf
      [and absence of anomalies in SU(2) Yang-Mills theories].
  @ Geometrical / topological view: Jackiw in(84);
    Bardeen & White ed-85;
    Catenacci & Pirola LMP(90);
    Perrot CM(07)ht/06 [and non-commutative index theory];
    Nikolov a0903,
  a0907-conf [and cohomologies of configuration spaces];
    Antoniadis & Savvidy EPJC(12)-a1205 [and topological invariants].
  @ Hamiltonian view:
    Nelson & Álvarez-Gaumé CMP(85);
    Esteve PRD(02)ht;
    Monnier CMP(15)-a1410 [anomalous field theories as relative field theories].
  @ Related topics:
    Dubois-Violette JGP(86);
    Bowick & Rajeev NPB(88) [and complex geometry];
    Kirzhnits & Shpatakovskaya TMP(96)qp/99 [singular potentials];
    Balachandran & de Queiroz PRD(12)-a1108,
    IJGMP(12)
      [anomalous symmetries and mixed states with non-zero entropies];
    Moss JPA(12)-a1201 [in the 'in-in', or closed-time path formulation of quantum field theory];
    Duff a2003-in [hist];
    > s.a. Nieh-Yan Form.
Gravitational Anomalies > s.a. 2D quantum gravity;
  black-hole radiation; entanglement entropy.
  @ General references:
    Álvarez-Gaumé & Witten NPB(84);
    Alvarez et al CMP(84) [and family's index theorem];
    Witten CMP(85);
    Hwang PRD(87);
    Kim & Yoon PLB(88);
    Brandt et al NPB(90);
    Shimono PTP(90) [Kähler fermions and lattice gravity];
    Estrada-Jiménez et al ht/04 [in non-commutative field theory];
    Abe & Nakanishi PTP(06)ht/05 [criticism of Álvarez-Gaumé & Witten];
    Salvio JPCS(09)-a0906 [role of Lorentz symmetry];
    Landsteiner et al PRL(11)-a1103 [and transport phenomena].
  @ Gravitational trace anomaly:
    Pascual et al PRD(88);
    Bilić et al PLA(07)-a0707 [and cosmology, effective cosmological constant].
  @ Gravitational-Yang-Mills: Perrot JGP(01)mp/00 [topological interpretation];
    Monnier CMP(14)-a1110 [self-dual field theory].
  @ In 2D: Bertlmann & Kohlprath AP(01)ht/00 [Einstein & Weyl anomaly];
    Habara et al a1206 [derivation of the Weyl anomaly from the Dirac sea];
    Majhi GRG(13)-a1210 [and entropy].
  @ In quantum gravity:
    Rovelli PLB(87);
    Surya & Vaidya NPB(98)ht/97.
Other Anomalies and Types of Theories > s.a. diffeomorphisms [in
  canonical quantum gravity]; dualities [electromagnetic duality anomaly].
  * In string theory:
    Gauge and gravitational anomalies cancel in certain string theories.
  @ In gauge theory: Grigore JPA(02),
    a1804-conf  [causal approach];
    Golterman & Shamir PRD(10)-a1004 [supersymmetric gauge theories].
  @ In string theory: Schwarz IJMPA(02)ht/01-conf [cancellation, review];
    Bilal & Metzger NPB(03) [M-theory, cancellation].
  @ Scale anomalies: Gomm et al PRD(86);
    Visser PLB(95);
    Lin & Ordóñez PRD(15)-a1508 [path-integral approach, finite temperature].
  @ Axial anomalies: Ioffe IJMPA(06),
    Jackiw IJMPA(10) [rev];
    Kopper & Lévêque JMP(12)-a1112 [U(1) axial gauge anomaly with regularized path integrals];
    Alfaro a2012 [in Very Special Relativity].
  @ CPT anomalies: Klinkhamer NPB(00);
    Klinkhamer & Schimmel NPB(02)ht.
  @ Non-commutative gauge theory: Bonora et al PLB(00) [Yang-Mills];
    Brandt et al JHEP(03)ht.
  @ Related topics: Bär NPB(03) [higher SU(2) representations];
    Kapustin & Thorngren PRL(14)-a1403 [3D discrete symmetries];
    Dowker a1412 [functional determinant multiplicative anomaly];
    Adler a1910 [in spin-3/2 theories].
 Other types: see chiral and trace anomalies.
 Other types: see chiral and trace anomalies.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021