|  Fractional Calculus | 
In General > s.a. analysis / differential forms;
  functional analysis [functional derivatives]; vector calculus.
  *  History: In a letter to
    Guillaume de l'Hôpital dated 1695, Leibniz asked what meaning one
    might assign to a non-integer-order differential; Scientists who followed up
    and developed the theory include Jacques Hadamard, Paul Pierre Lévy,
    Joseph Liouville, Bernhard Riemann, and Hermann Weyl.
  *  Properties: One of their
    general properties is non-locality for non-integer order; They are related to
    (multi)fractals, and have applications in engineering (viscoelastic materials),
    time series, kinetics of chaotic systems, polymer science, biophysics; They
    can behave as dissipative terms in dynamical systems.
  @ Books:
    Oldham & Spanier 74 [classic];
    Hilfer ed-00 [intro and applications];
    Baleanu et al 16.
  @ For physicists:
    Uchaikin 13;
    Herrmann 14 [e1 r: PT(12)feb];
    He IJTP(14) [and fractal spacetime, tutorial].
  @ General references: in Gel'fand & Shilov 64;
    in Bateman 54, v2, chXIII;
    Nigmatullin TMP(92);
    Kolwankar a1307-proc [rev],
    CFC-a1312;
    Geisinger JMP(14) [proof of Weyl's law];
    Mijena & Nane SPA-a1409
      [spacetime fractional stochastic partial differential equations];
    Giusti ND(18)-a1710 [broader class of fractional operators];
    Zine & Torres FrFr(20)-a2008 [stochastic fractional calculus, and stochastic processes].
  @ Fractional derivatives: Kobelev a1202-wd [new type];
    Oliveira & Capelas de Oliveira a1704 [Hilfer-Katugampola];
    Gladkina et al a1801 [expansion in terms of integer derivative series];
    Mingarelli JPA(18)-a1803;
    Bagarello RMJM-a1912;
    Capelas de Oliveira et al a1912;
    Makris a2006 [of the Dirac delta function].
  @ Properties: Weberszpil BSCAM(15)-a1405 [modified fractional chain rule];
    Shchedrin et al a1803 [generalized product and chain rules].
  @ Examples: Shchedrin et al SciPP(18)-a1711 [exact results for a class of elementary functions].
  @ Interpretation, mathematical applications:
    Rutman TMP(95);
    Podlubny FCAA(02)m.CA/01 [and integration];
    Cottone & Di Paola PEM(09)-a1301 [probabilistic characterization of random variables];
    > s.a. differential equations [fractional];
      fractals [relationship].
  > Online resources:
    see MathPages page;
    MathWorld page;
    Wikipedia page.
Physics Applications
  > s.a. description of chaos; variational principles.
  *   In quantum theory: The space-fractional
    Schrödinger equation provides a natural extension of the standard Schrödinger
    equation when the Brownian trajectories in Feynman path integrals are replaced by Lévy
    flights.
  @ Classical mechanics: Mainardi in(97)-a1201 [viscoelastic bodies, etc];
    Fa PhyA(05) [and dissipation, falling body];
    Kobelev Chaos(06)-a1101 [post-Newtonian mechanics];
    Stanislavsky EPJB(06)-a1111 [Hamiltonian, and fractional oscillators];
    Atanacković et al JPA(08) [Euler-Lagrange equations],
    JPA(10) [generalized Hamilton principle];
    Tarasov 11 [fractional dynamics];
    Laskin a1302 [fractional classical mechanics];
    Korichi & Meftah JMP(14) [statistical mechanics].
  @ Wave equations: Mainardi FBMG-a1202 [wave propagation in viscoelastic media];
    Näsholm & Holm a1202-conf [acoustic];
    Luchko a1311-conf [multi-dimensional];
    > s.a. types of wave equations.
  @ Field theory: Baleanu & Muslih PS(05) [fractional Lagrangian];
    Muslih & Baleanu NCB(05) [quantum field theory];
    Baleanu & Vacaru CEJP(11)-a1007
      [fractional configurations in gravity theories and Lagrange mechanics];
    Calcagni FrontP(18)-a1801-proc [multifractional calculus and quantum gravity];
    Behtouei et al a2004 [electromagnetism];
    > s.a. dirac fields; klein-gordon fields;
      modified electromagnetism.
  @ Cosmology: Roberts a0909;
    Shchigolev MPLA(21)-a2104 [accelerated expansion].
  @ Quantum mechanics:
    Muslih & Rabei MPLA(05);
    Muslih et al PS(06) [Hamiltonian formulation and path-integral quantization];
    Weberszpil et al a1206-conf [coarse-grained formulation];
    Godinho et al IJTP(14)-a1208 [and non-commutativity];
    Longhi OL(15)-a1501
      [application of the fractional Schrödinger equation in optics];
    Moniz & Jalalzadeh Math(20)-a2003,
    Rasouli et al MPLA(21) [quantum cosmology].
  @ Quantum field theory: Kleinert EPL(12)-a1210 [strongly-interacting many-particle systems];
    Calcagni a2102 [scalar and gravitational fields].
  @ Other physics applications:
    Hilfer ed-00;
    Kobelev m.CA/00 [on multifractal sets],
    ht/00 [and multifractal spacetime];
    > s.a. hamilton-jacobi theory.
  > Physical systems:
    see classical systems [non-conservative]; diffusion;
    dissipative systems; Feynman-Kac Formula;
    fokker-planck equation; gauge transformations;
    hamiltonian systems; lagrangian systems;
    markov process; MOND; Relaxation
    Phenomena.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 apr 2021