|  Magnetic Monopoles | 
Abelian / Dirac Monopoles
  > s.a. QED [flux quantization, curved spacetime].
  * History: 1931, First proposed
    by Dirac; 14 feb 1982, Event with monopole signature seen in Blas Cabrera's
    SQUID; 2003, Team from Japan, China and Switzerland claim they have found indirect
    evidence, based on the anomalous Hall effect; 2010, Still no confirmation.
  * Idea: Particles that carry
    isolated N or S magnetic poles; Solutions of ∇ · B
    = 0, with B not of the form ∇ × A; They are
    characterized by H2(\(\mathbb R^3\) \ {0};\(\mathbb R\))
    = H2(S2;\(\mathbb R\))
    = \(\mathbb R\).
  * Classification: The gauge group
    is U(1), so monopoles are classified by U(1)-bundles P over \(\mathbb R\)
    \ {0}, homotopic to S2, i.e., by elements of
    π1(S1)
    = \(\mathbb Z\), the integer n (magnetic charge) being evaluated by calculating
    the characteristic class c1(P),
    and integrating it over S2:
C1 = −\(1\over2\pi\)tr ∫ S2 F = n .
  * Coupling strength:
    Since ge/\(\hbar\)c = n/2, from
    e2/\(\hbar\)c = 1/137
    we get g2/\(\hbar\)c
    = (137/4) n2, an enormous value.
  * Particle trajectories:
    A charged particle will spiral inward to a minimum distance, then outward;
    There are no bound states.
References > s.a. gravitational collapse;
  electromagnetism; solutions and phenomenology.
  @ General: Dirac PRS(31);
    Ramsey PR(58) [and discrete symmetries];
    Ferrell & Hopfield Physics(64);
    Schwinger Sci(69)aug;
    Wu & Yang PRD(75);
    Dirac IJTP(78);
    Yang pr(79); Von Baeyer ThSc(90)jul;
    Staruszkiewicz in(92)ht/98;
    Bakker et al PRL(98) [in SU(2) gauge theory];
    Lynden-Bell & Nouri-Zonoz RMP(98)gq/96 [interactions];
    Kalogeropoulos IJGMP(04)mp/05 [and differential characters];
    Weinberg 12.
  @ History: Bais in(05)ht/04;
    Aloisi & Nali Ulisse-a1608-RG [Dirac];
    news sn(18)jan [brief search update].
  @ Reviews: Carrigan NC(65);
    Sandars CP(66);
    Amaldi in(68);
    Goldhaber & Trower AJP(90)may [RL],
    91;
    Shnir 05;
    Rajantie CP(12)-a1204;
    Mavromatos & Mitsou IJMPA(20)-a2005.
  @ Particle dynamics:
    Rodrigues Sobreira & Bezerra de Mello G&C(99)ht/98;
    Banerjee & Ghosh IJMPA(00);
    Pitelli & Letelier PRD(09)-a0911 [massive scalar quantum particle];
    Ushakov IJTP(11)-a1004 [charged particle in the field of a magnetic monopole, phase space];
    Vaz IJTP(13) [Clifford algebra approach];
    Dimock a2005 [quantum charged particle];
    > s.a. quantum particles; spin-1 particles.
  @ And charge quantization: Dirac PR(48);
    Jackiw IJMPA(04)ht/02-conf;
    Nesterov & de la Cruz PLA(04)ht,
    JMP(08)ht/04 [and representations of rotation group];
    Leal & López JMP(06)ht/04 [in the loop representation];
    Goldhaber & Heras a1710 [with non-zero photon mass];
    Heras CP(18)-a1810 [rev].
  @ And general relativity / cosmology: Gibbons LNP(91)-a1109 [gravitating, and black holes];
    Borde et al PRD(99)gq/98 [collisions and baby universes];
    Arreaga et al PRD(00)gq [stability];
    Marunović & Prokopec PLB(16)-a1411 [global monopoles and topology change].
Non-Abelian Monopoles > s.a. symplectic structures.
  * Idea: Classical soliton
    solutions in gauge theories, with non-abelian (e.g., color) magnetic charge;
    Most known exact solutions are static.
  * In Yang-Mills-Higgs theory:
    SU(2)-valued pairs (A, φ), with A a connection
    and φ a scalar field, with energy
E = \(1\over2\)∫ d3x [B2 + (Dφ)2 + λ(φ2 − C2)] ,
    where B:= ∇ × A + [A, A]
    and Dφ:= ∇φ + [A, φ];
    One way to obtain solutions is to minimize E with the constraint
    φ2 = C2,
    which gives the Bogomolny Equation, with the BPS solutions.
  @ General references: 't Hooft NPB(74);
    Polyakov JETPL(74);
    Goddard & Olive RPP(78);
    Freund IJTP(78);
    Hitchin CMP(82);
    Díaz & Lázaro-Camí a0811;
    Evslin JHEP(18)-a1801 [spiked, with two charged scalar Higgs fields].
  @ Books, reviews: Marciano IJTP(78);
    Atiyah & Hitchin 88;
    Murray mp/01;
    Tyurin RMS(02) [mathematical];
    Ritter mp/03;
    Konishi LNP(08)ht/07.
  @ And sigma models: Witten PRD(79);
    Forgács et al PRL(80).
  @ Quantization: Auzzi et al NPB(04)ht,
    Konishi proc(04)ht [quantum and topological aspects];
    Qandalji IJTP(06)ht/05 [Dirac, axial gauge].
  @ Related topics: Bais & Primack NPB(77) [spherical];
    Mazur & Richter PLA(85) [uniqueness];
    Labastida & Mariño PLB(95)ht [Lagrangian],
    NPB(95)ht;
    Houghton JHEP(00)ht/99 [and Legendre transform];
    van der Bij & Radu IJMPA(03) [no Yang-Mills-Higgs rotating in Minkowski];
    Bonati et al PRD(10)-a1009 [on the lattice].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 30 dec 2020