|  Non-Commutative Field Theory | 
In General > s.a. non-commutative geometry;
  energy-momentum tensor; lattice
  field theory [including fermion doubling]; types of field theories.
  * Idea: In principle,
    quantize the manifold underlying a field theory (spacetime or space)
    by replacing it with a non-commutative matrix model or a "fuzzy
    manifold"; In practice, replace products of fields in the action
    / Hamiltonian by star products, then integrate as usual.
  * Motivation: Non-commutative
    spaces (spacetimes) naturally arise in some approaches to quantum gravity;
    Field theories on non-commutative spacetimes come with natural regularization
    parameters, while preserving their symmetries and topological features and
    altogether overcoming the fermion-doubling problem.
  * Particle physics: A nice
    result is that, once fermions are fixed, there is no arbitrariness in the
    Higgs sector; An issue is that models generally suffer from a manifestly
    non-Wilsonian coupling of infrared and ultraviolet degrees of freedom known
    as the "IR/UV problem".
  * Result: Free κ-Minkowski
    space field theory is equivalent to a relativistically invariant, non local,
    free field theory on Minkowski spacetime.
  > Related topics:
    see algebraic quantum field theory;
    anomalies; boundaries
    in field theory; CPT symmetry;
    fock space; twistors.
Types of Theories > s.a. gauge theories [including standard
  model]; GUTs; non-commutative physics;
  supersymmetry and supersymmetric theories.
  * Different frameworks:
    One can use different star products, for example the Moyal and Wick-Voros
    (or normally ordered) ones.
  @ Scalar fields:
    Gubser & Sondhi NPB(01) [phase structure];
    Moffat PLB(01)ht/00;
    Habara PTP(02)ht/01;
    Bietenholz et al NPPS(04)ht/03,
    APPB(03)ht-conf
      [λφ4, numerical];
    Bertolami & Guisado PRD(03) [coupled to gravity];
    Daszkiewicz et al IJMPA(05) [and DRS];
    Steinacker JHEP(05) [non-perturbative],
    ht/05-conf [eigenvalue distribution];
    Grosse & Steinacker JHEP(06)ht [4D self-dual φ3];
    Panero JHEP(07) [numerical];
    Freidel et al IJMPA(08)-a0706 [free scalar in κ-Minkowski];
    Galluccio et al a0807,
    a0807,
    PRD(08)-a0810 [with Wick-Voros product];
    Bertolami & Zarro PLB(09)-a0812 [coupled to gravity, stability conditions];
    Balachandran et al JHEP(11);
    Bietenholz et al JPCS(15)-a1402;
    Rea & Sämann JHEP(15)-a1507 [scalar field theory on the fuzzy disc, phase diagram].
  @ Scalar fields, Snyder spacetime:
    Battisti & Meljanac PRD(10)-a1003;
    Girelli & Livine JHEP(11)-a1004;
    > s.a. modified quantum field theories..
  @ Fermion fields: Gracia-Bondía et al PLB(98)ht/97,
    Balachandran et al MPLA(00) [fermion doubling];
    Bourouaine & Benslama MPLA(05)ht [Dirac, and gravity],
    JPA(05) [in electromagnetic field];
    Bertolami & Queiroz PLA(11)-a1105 [phase-space non-commutativity];
    Verch APP-a1106-proc [Dirac field on Moyal-Minkowski spacetime];
    Williams & Scholtz a1512
      [manifestly Lorentz covariant, interacting and non-commutative Dirac  equation].
  @ In curved non-commutative spacetime: Schenkel & Uhlemann Sigma(03)-a1003;
    Jafari a1011;
    Schenkel PoS-a1101;
    Franchino-Viñas & Mignemi a2104
      [Snyder-de Sitter space, φ4 theory].
  @ String theory:
    Seiberg & Witten JHEP(99)ht;
    Witten CQG(00);
    Tezuka MSc-ht/01;
    Barbosa JHEP(03)ht [interpretation];
    Wang ht/05 [free, bosonic];
    > s.a. String Field Theory.
  @ Non-commutative target space: Balachandran et al PRD(08)-a0706 [scalar field],
    Sigma(10)-a1003.
  @ Other:
    Jack & Jones PLB(01) [ultraviolet-finite];
    Heckman & Verlinde NPB(15)-a1401 [covariant non-commutative deformation of 4D cft];
    Zois a1401-conf
      [non-commutative topological quantum field theory  and non-commutative Floer homology];
    > s.a. 3D quantum gravity; Born-Infeld Theory;
      gravity; Gross-Neveu;
      Wess-Zumino Theory.
  > Related topics: see dirac
    procedure; Haag's Theorem; minkowski space
    [deformed]; particle statistics; spin-statistics theorem;
    statistical mechanics.
References
  > s.a. path integrals; Schwinger-Dyson
  Equation; non-commutative physics [Hamiltonian, time].
  @ Intros, reviews: Kerner LNP(00)mp;
    Douglas & Nekrasov RMP(01)ht;
    Szabo PRP(03)ht/01-ln;
    Ydri PhD(01)ht;
    Gracia-Bondía AdP(02)ht;
    Dito & Sternheimer in(02)m.QA [history];
    Girotti AJP(04)ht/03-ln;
    Schaposnik ht/04-ln
      [including solitons and instantons];
    Wulkenhaar JGP(06);
    Bal & Qureshi Sigma(06)ht-proc,
    Akofor et al IJMPA(08)-a0803-ln [fuzzy physics and quantum field theory on Groenwald-Moyal plane];
    Doplicher JPCS(06)ht;
    Rivelles JPCS(11)-a1101;
    Chaichian et al NPB(20)-a2001 [axiomatic formulation].
  @ Unitarity: Gomis & Mehen NPB(00)ht;
    Bahns et al PLB(02)ht.
  @ Hamiltonian, symplectic formalism: Neves et al JPA(04)ht/03,
    PRD(04)ht/03;
    Vassilevich ht/04;
    Abreu et al IJMPA(06)ht/04.
  @ And causality: Greenberg PRD(06)ht/05,
    PRD(06);
    Soloviev PRD(08)-a0802 [failure of microcausality];
    Haque & Joglekar JPA(08)ht/07;
    Balachandran et al a0905-conf [on the Groenewold-Moyal plane];
    Soloviev TMP(10)-a1012 [locality and causality].
  @ Renormalizable:
    Bieliavsky et al JNCG(09) [possibly finite];
    Grosse & Wulkenhaar GRG(11);
    > s.a. renormalization.
  @ Properties of quantum field theories:
    Álvarez-Gaumé & Vázquez-Mozo NPB(03)ht;
    Bahns FdP(04)ht-conf [UV];
    Smailagic & Spallucci JPA(04) [Lorentz, unitarity, UV];
    Kobayashi & Sasaki IJMPA(05) [supersymmetric interpretation];
    Panero Sigma(06)ht-proc [rev];
    Chaichian et al ht/06 [theorems, rev];
    Gangopadhyay PhD(08)-a0806;
    Saxell PLB(08) [Lorentz-invariant, non-causality];
    Bahns a1012 [IR/UV mixing problem];
    van Suijlekom PLB(12)-a1204 [almost-commutative geometries, renormalizability];
    Labuschagne & Majewski a1702 [integral and differential structures].
  @ Other formal aspects:
    Savvidy in(03)ht/02 [new type];
    Bozkaya et al EPJC(03)ht/02 [amplitudes and path integrals];
    Namsrai IJTP(03);
    Chaichian et al JMP(11)ht/04 [Wightman functions];
    Paschke & Verch CQG(04)gq [covariant quantum field theory over spectral geometries];
    Mandanici & Marcianò JHEP(04) [Heisenberg evolution];
    Bahns et al PRD(05) [Wick products];
    Gonera et al PLB(05)ht [deformed Poincaré symmetry];
    Govindarajan et al MPLA(06) [regularization];
    Freidel et al PLB(07)ht [equivalence to non-local field theory on Minkowski space];
    Kersting & Yan MPLA(08)-a0901 [IR/UV problem and coupling to gravity];
    Balachandran et al PRD(10)-a0910 [inequivalence of approaches];
    Cortese & García IJMPA(10)-a1005 [Poincaré symmetry];
    Akofor PhD-a1012 [symmetries, on the Moyal plane];
    Basu et al JPA(11)-a1101 [relationship between the Moyal and Voros products];
    Lukierski & Woronowicz JPA(12)-a1105 [braided tensor product and covariance];
    > s.a. quantum field theory techniques [worldline approach].
  @ Phenomenology: Mariz et al PRD(07) [dispersion relations];
    Kurkov et al PLB(14)-a1312 [high-energy bosons do not propagate];
    Vassilevich JPCS(16)-a1510 [bosonic fields at very high energies];
    > s.a. cosmological consequences.
  @ Spacetime symmetries: Iorio & Sykora IJMPA(02)ht/01 [gauge theories];
    Szabo CQG(06)ht [and strings],
    AIP(07)ht [and renormalization].
  @ Special backgrounds: Nakayama & Shimono PTP(04)ht [S4];
    Nazaryan & Carlson PRD(05) [non-commutative superspace].
  @ Quantization: Amorim & Barcelos-Neto JPA(01)ht,
    Acatrinei PRD(03)ht/02 [scalar];
    Carmona et al JHEP(03);
    Abe IJMPA(07)ht/06 [non-commutative quantization];
    Chaichian et al JHEP(08)-a0706 [space of test functions];
    Daszkiewicz et al PRD(08)-a0708;
    Fiore JPA(10)-a0811 [with twisted symmetries].
  @ Perturbative effects: Minwalla et al JHEP(00)ht/99;
    Kossow PRD(08)ht/06;
    Samary et al EPJC(14)-a1406 [pair production of Dirac particles].
  @ At finite temperature:
    Strelchenko & Vassilevich PRD(07)-a0705;
    Fosco & Silva JHEP(08)-a0710 [2+1 scalar].
  @ Braided quantum field theory: Oeckl CMP(01)ht/99;
    Sasai & Sasakura PTP(07)-a0704 [Hopf algebra symmetries and Ward-Takahashi identities].
  @ Related topics: Grosse et al IJTP(96);
    Kempf JMP(97) [non-zero minimal uncertainties];
    Cho et al IJMPD(00)ht/99 [propagator];
    Ydri PRD(01) [as a regulator];
    Chaichian et al NPB(01)ht [non-trivial topology];
    Amelino-Camelia et al ht/02-conf;
    Kowalski-Glikman & Nowak PLB(02)ht,
    IJMPD(03)ht/02 [and DSR];
    Barcelos-Neto ht/02 [in curved spacetime];
    Pinzul & Stern NPB(05)ht [procedure for corrections];
    Soloviev TMP(06) [axiomatic];
    Bu et al PRD(06) [from twisted Fock space];
    Aschieri et al PRD(08)-a0708 [from Drinfeld twist].
  @ Particle physics: Chamseddine & Fröhlich PRD(94)ht/93 [SO(10)],
    PLB(93)ht [Higgs and top masses],
    ht/93-conf [rev];
    Connes CMP(96)ht;
    Schücker ht/97-ln;
    Stephan JMP(07)ht/06 [massive neutrinos];
    van den Dungen & van Suijlekom RVMP(12)-a1204 [in almost commutative spacetime, for physicists];
    Gargiulo et al EPJC(14)-a1305 [algebra doubling and neutrino mixing].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 2 apr 2021