|  Regularization Schemes in Quantum Field Theory | 
In General
  > s.a. path integrals; quantum
  field theory formalism and techniques; renormalization.
  * Idea: Procedures for introducing
    some parameters that allow to write the divergent quantities in quantum field
    theories as limits of finite expressions for some values of the parameters.
  * Remark: One may have to take limits
    in special orders, and keeping specific combinations of parameters constant.
  * Schemes: Covariant (Pauli-Villars),
    Dimensional, Point-splitting, Zeta-function regularization, or Adiabatic techniques.
  @ General references:
    Eyal IJMPA(90) [with constraints];
    Dunne & Rius PLB(92) [relationships];
    Keyl mp/00 [smearing on timelike line];
    Ydri PRD(01)ht/00,
    Valavane CQG(00)ht [from non-commutative geometry]; 
    Battle 99,
    Altaisky ht/03-proc,
    ht/03-ch [wavelet-based];
    Ng & van Dam JPA(05)ht/04 [applying neutrix calculus];
    Grangé & Werner NPPS(06)mp/05 [operator-valued distributions, Epstein-Glaser approach];
    Rouhani & Takook IJTP(09)gq/06 [Krein space + metric fluctuations];
    Solomon a1301
      [necessity of regularization to avoid inconsistent results];
    Smirnov a1402 [and general covariance].
  @ Simple examples: Trinchero a1004;
    Olness & Scalise AJP(11)mar [from classical electrostatics].
  @ Adiabatic regularization:
    Parker & Fulling PRD(74);
    Fulling et al PRD(74);
    Landete et al PRD(13)-a1306,
    PRD(14)-a1311 [for spin-1/2 fields];
    del Rio & Navarro-Salas PRD(15)-a1412 [equivalence with DeWitt-Schwinger];
    Ferreiro et al a1807 [in an expanding background].
  @ Other schemes:
    Egoryan & Manvelyan TMP(86) [stochastic];
    Ivashchuk G&C(97)gq,
    a1902 [using a complex metric];
    Brandt FPL(04) [intrinsic gravitational regularization];
    Stora IJGMP(08)-a0901,
    Falk et al JPA(10)-a0901 [improved BPHZ method];
    Öttinger PRD(11)-a1008 [from dissipative system with decreasing friction parameter];
    Ardenghi & Castagnino PRD(12)-a1105 [projection method, using the formalism of decoherence];
    Pittau JHEP(12) [Four-Dimensional Regularization];
    Czachor a1209-ln [just by quantization];
    Pittau a1304-proc [four-dimensional];
    Morgan a1406 [by test function];
    Wang et al a1407 [motivated by Bose-Einstein condensation];
    Ghilencea PRD(16)-a1508 [scale-invariant];
    Albert a1609 [heat kernel regularization];
    Tarasov AHEP(18)-a1805 [fractional-order differential operators];
    s> s.a. fractals in physics.
  @ Zeta-function: Moretti CMP(99)gq/98 [vs point-splitting];
    Cognola & Zerbini in(11)-a1007-fs [and multiplicative anomaly];
    Moretti SPP(11)-a1010 [rev].
Dimensional Regularization
  * Idea: A prescription
    for converting divergent Feynman diagrams into expressions in an arbitrary
    number of spacetime dimensions D, which are singular in the limit
    D → 4. They are formally manipulated in their general form, and
    their singular behavior and finite contribution are shown explicitly.
  @ References: Leibbrandt RMP(75) [rev];
    Stevenson ZPC(87) [and scalar field theory];
    Bietenholz & Prado BSMF-a1211,
    PT(14)feb [history];
    Schonfeld EPJC(16)-a1612 [fractal model];
    > s.a. particle physics.
Pauli-Villars (Covariant) Regularization Scheme
  * Idea: A prescription
    for introducing regularizing parameters in a divergent Feynman diagram,
    to be able to manipulate it and show explicitly its singular behavior
    and its finite contribution.
  * Procedure: One modifies all propagators...
  @ References:
    Pauli & Villars RMP(49).
Specific Theories and Quantities > s.a. Nambu-Jona-Lasinio Model;
  non-commutative field theories; vacuum.
  @ Scalar field theories: Pickrell LMP(09)-a0812 [2D, consistency].
  @ Gauge theories:
    Asorey & Falceto PLB(88),
    NPB(89);
    Karanikas & Ktorides AP(90) [non-perturbative, continuum];
    't Hooft PLB(95) [lattice regularization without chiral anomaly];
    Bonini & Tricarico NPB(01)ht [background field method];
    Brodsky et al NPB(04) [light-cone quantized, and e magnetic moment];
    Morita PTP(04)ht/03,
    ht/04 [non-commutative];
    Slavnov TMP(08) [local, gauge-invariant, infrared].
  @ In curved spacetime:
    Parker & Fulling PRD(74),
    PRD(74) [adiabatic];
    Moretti JMP(99)gq/98 [comparison],
    gq/99-conf,
    Elizalde G&C(02)ht/01 [ζ-function];
    Hack & Moretti JPA(12)-a1202 [comparison of regularization schemes];
    Géré et al CQG(16)-a1505 [manifestly generally covariant, analytic regularisation];
    > s.a. quantum fields in curved spacetime.
  @ Quantum gravity: Pérez PRD(06)gq/05 [lqg, ambiguities];
    Jia a2003 [summing over causal structures];
    > s.a. connection formulation; loop quantum cosmology.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 10 jun 2020