|  Lattice Field Theories | 
In General
  > s.a. cellular automaton; lattice [math notion];
  number theory [geometric] / types of matter
  in lattice theories.
  * Motivation: They allow some
    approximate calculations to be done, and, in the case of lattice spacetimes,
    they are a trick to introduce a cutoff for non-perturbative regularization; But
    one can consider the approach as more fundamental than the continuum one, and take
    more seriously its results, hoping to get them in some approximation from a full
    quantum gravity theory (> see discrete spacetime);
    It is natural in the context of (Euclidean) path-integral quantization.
  * Remark: It emphasizes the
    close connection with statistical mechanics; The strong coupling limit is
    equivalent to a high-T expansion.
  @ General references: Kadanoff RMP(77);
    Drouffe & Itzykson PRP(78);
    Dashen & Gross PRD(81);
    Rebbi ed-83; Rebbi SA(83)feb;
    't Hooft et al ed-84;
    Friedberg et al JMP(94);
    Boozer AJP(10)dec [periodic lattices in 2D Minkowski space];
    Preskill a1811-conf [quantum field theory on a quantum computer].
  @ Texts, reviews: Kogut RMP(79);
    Creutz 83; Creutz ed-92;
    Montvay & Münster 94;
    DeGrand ht/96-ln [non-perturbative quantum field theory],
    comment Neuberger hp/04;
    Smit 02;
    Di Pierro IJMPA(06)hl/05 [quantum field theory, especially gauge theory and QCD];
    DeGrand a1907-ln [physical motivation].
  @ General references:
    Ueltschi in(02)mp/01 [bosonic particles];
    Kuzemsky RNC(02) [many-particle].
  @ State entanglement: Narnhofer PRA(05)qp/04 [high-T];
    Cramer et al PRA(06) [area scaling law];
    Unanyan et al PRA(10)-a0910 [dynamics].
Random Lattices
  > s.a. chaotic systems; dirac fields;
  ising model; spin models;
  lattice gauge theory; regge calculus.
  * Idea:  Build a lattice
    using the Voronoi construction on a uniformly random set of points; Can be
    done in Riemannian geometry, but not in Lorentzian geometry.
  * And localization: Simulation
    of diffusion processes shows that geometrical defects, sites with abnormally low
    or large connectivities, produce localization of eigenmodes.
  * And phase transitions:
    Some phase transitions observed in simulations with regular lattices are softened
    in random lattices (e.g., the 10-state Potts model on 2D lattices), while in other
    systems the critical behavior persists.
  @ References: Ren NPB(88) [massless fermions];
    Eynard & Kristjansen NPB(98) [three-color problem];
    Biroli & Monasson JPA(99) [localized state description];
    Zinn-Justin EPL(00)cm/99,
    Kostov NPB(00)ht/99  [6-vertex model];
    Orlandini et al JPA(02) [thermodynamic self-averaging];
    Sanpera et al PRL(04) [atomic Fermi-Bose mixtures];
    Feng & Siegel PRD(06)ht [superstrings];
    Borot & Eynard JSM(11)-a0911 [O(n) loop gas model];
    Teixeira a1304 [and exterior calculus];
    Barghathi & Vojta PRL(14) [phase transitions].
  @ Ising model: 
    Pérez Vicente & Coolen JPA(08);
    Dommers et al JSP(10);
    Lage-Castellanos et al JPA(13) [replica-symmetric solution];
    Giardinà et al a1509 [annealed central limit theorems].
Other Types of Lattices
  > s.a. cell complex; graph theory;
  lattice gauge theory [simplicial lattice]; network;
  regge calculus; Tangle; tiling.
  * Non-Abelian lattices:
    Ones with a non-Abelian symmetry group; For example, C60.
  @ Asymmetric lattices:
    Csikor & Fodor PLB(96) [SU(2)-Higgs].
  @ Fractal lattices: Windus & Jensen PhyA(09) [and order of phase transition];
    > s.a. fractals.
  @ Cell complexes:
    Jourjine PRD(85) [dimensional phase transitions],
    PRD(86) [spinors and gauge fields];
    Vanderseypen pr(93) [Langevin equation].
  @ Supersymmetric lattice: Grosse CMP(97) [field theory];
    Catterall a1005-proc.
  @ Non-commutative: Bimonte et al JGP(96)ht/95 [continuum limit];
    Ercolessi et al RVMP(98)qa/96 [posets and representations of non-commutative algebras],
    qa/96 [K-theory];
    Balachandran et al MPLA(00)ht/99 [fermion doubling];
    Häußling AP(02)ht/01;
    Besnard a1903 [fermion doubling].
  @ Related topics: Chandrasekharan & Wiese NPB(97) [quantum links].
Related Concepts and Techniques
  > s.a. algebraic quantum field theory; crystals
  [dynamics of lattices]; field theory; wave-function collapse.
  * Techniques: One uses methods of
    statistical and many-body physics, and discrete approximations to differential equations.
  * Coordination sequence: The sequence
    {S(n)} gives the number of nodes n links away from a given node.
  @ Renormalization:
    Balaban CMP(87);
    Yamamoto LMP(01);
    Bertini et al CMP(05) [cluster expansion];
    Gu & Wen PRB(09)
    + Sachdev Phy(09) [tensor networks];
    Brydges & Slade JSP(15)-a1403,
    JSP(15)-a1403,
    ..., JSP(15)-a1403
      [lattice field theories involving boson and/or fermion fields, rigorous];
    > s.a. renormalization group.
  @ Small vs large lattice:
    Patrascioiu & Seiler PLB(96);
    Lin et al PRL(99) [1D Fermi-Pasta-Ulam chain].
  @ On curved manifolds: Brower et al a1601-conf [quantum finite elements, simplicial lattice];
    Arrighi et al a1812 [from discrete-time quantum walks].
  @ Continuum limits: de Lyra et al PRD(91) [differentiability and continuity];
    Bimonte et al JGP(96)ht/95;
    Nielsen & Rugh2 cd/96,
    ht/96-conf [gauge theory];
    Delphenich AdP(10)-a1010 [obstructions from defects, and cohomology classes];
    Davoudi & Savage PRD(12)-a1204 [recovery of rotational invariance];
    Osborne a1901 [general procedure, Hamiltonian];
    Radičević a2105,
    a2105,
    a2105 [systematic construction].
  @ Coordination sequences:
    Conway & Sloane PRS(97).
  @ Monte Carlo method:
    Creutz et al PRP(83);
    NS(91)jan5, 41-44;
    Easther et al hl/03-conf [modified schemes];
    Langfeld & Lucini a1606-conf [density-of-states method];
    Lawrence a2006-PhD [approaches to the sign problem].
  @ Other techniques: García et al PLB(94) [non-probabilistic];
    Markopoulou ht/00 [coarse-graining];
    Capitani PRP(03) [perturbation theory];
    Succi JPA(07)
      [Boltzmann discretization, 1+1 Klein-Gordon and Dirac fields];
    Amador et al a1610 [mean spherical approximation].
  @ Related topics: Ben-Av & Solomon MPLA(89) = IJMPA(90);
    Schmidt & Stamatescu MPLA(03) [matter determinants];
    Flach & Gorbach PRP(08) [discrete breathers];
    Campos & Tututi PLA(08) [finite-size effects];
    Shaposhnikov & Tkachev PLB(09)-a0811 [quantum scale invariance];
    Kevrekidis JO(13)-a1302 [beyond nearest-neighbor interactions];
    Dittrich & Kamiński a1311 [dynamics of intertwiners];
    Arjang & Zapata CQG(14)-a1312 [coarse-graining and continuum limit];
    Zapata a1602 [observable currents];
    Imaki & Yamamoto PRD(19)-a1906 [with torsion].
  > Other topics: see green functions;
    holography; phase transitions; types
    of manifolds [discretized].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 may 2021