|  Quantization of Gauge Theories | 
In General
  > s.a. QCD; QED; quantization
  of constrained systems; self-dual fields.
  * History: Renormalizability was proved
    by 't Hooft and Veltman; It works because of dimensional regularization.
  * Idea: It is most convenient to work
    in a gauge-fixed approach, but then one has to use some method (e.g., BRST charges
    or Faddeev-Popov ghosts) to relate it to gauge invariance; Also, Gribov problem.
  @ Textbooks and reviews: Faddeev & Slavnov 80;
    Jackiw RMP(80);
    Mayer APA(81);
    Nakanishi & Ojima 90;
    Henneaux & Teitelboim 92;
    Makeenko 02;
    Witten a0812-ln [overview];
    Prokhorov & Shabanov 11;
    Zeidler 11;
    Cline a2005-ln.
  @ General references: Holstein AJP(88)may;
    Frasca EPJP(17)-a1509 [2-point function];
    Milsted & Osborne PRD(18)-a1604 [quantum-information perspective].
  @ Renormalization:
    't Hooft ht/94-ln;
    Cheng & Li IJMPA(98) [Dyson's program];
    Dine & Gray PLB(00)ht/99 [non-renormalization theorems];
    Kawamoto & Matsuo PTP(08)ht/03;
    Hollands RVMP(08)-a0705 [consistent, in curved spacetime];
    Tupper a1412
      [unitarity and renormalizability in a single framework];
    > s.a. renormalization group.
  @ With boundaries:
    Actor PhyA(90) [boundary conditions];
    Cattaneo et al CMP(18)-a1507 [perturbative BF-BFV quantization scheme];
    Díaz-Marín & Oeckl Sigma(18)-a1712 [using general boundary quantum field theory].
  @ Related topics: Manoukian PRD(86);
    Villanueva et al JPA(00)ht/99 [use gauge-invariant states];
    > s.a. effective field theories.
  > Related topics: see BRST quantization;
    quantum field theory and algebraic approach; stochastic
    quantum mechanics; regularization.
Approaches and Techniques > s.a. algebraic and axiomatic
  approach; Faddeev-Jackiw Method; green functions;
  Gupta-Bleuler; lqg; vacuum.
  * Ambiguities: One ambiguity
    is the existence of different theta sectors.
  @ Different variables: Mandelstam PR(68);
    Haagensen & Johnson NPB(95) [adapted to Gauss];
    > s.a. gauge theories [Wilson loops].
  @ Gauge fixing: Goldstone & Jackiw PLB(78);
    Fujikawa & Terashima NPB(00);
    Slavnov TMP(09)-a0902 [avoiding the Gribov problem];
    Ghorbani & Esposito IJGMP(11)-a1009,
    Slavnov a1503/TMP [Slavnov formulation, rev];
    > s.a. Gribov Effect.
  @ Perturbative:
    Veltman NPB(68) [massive Yang-Mills fields];
    't Hooft & Veltman NPB(72) [Feynman rules and S-matrix];
    Schubert a1410-th [multi-loop scattering amplitudes];
    Anselmi JHEP(19)-a1909 [proof of perturbative unitarity];
    > s.a. scattering amplitudes.
  @ Non-perturbative:
    Shabanov & Klauder PLB(99)ht [path integral];
    Dzhunushaliev et al hp/04,
    AIP(05)hp/04 [approximate, n-point functions];
    Sobreiro PhD(07)-a0705;
    Chatterjee PhD-a1104 [dual confinement of magnetic monopoles];
    > s.a. holonomies [holonomy algebras].
  @ Mass: Calixto & Aldaya NPPS(00)ht [non-Higgs mechanism];
    Fosco et al JPA(02) [2D, induced by vacuum polarization];
    Faddeev a0911-fs.
  @ Related topics: Halperin AP(95) [KAM];
    Bassetto et al ht/95 [on a cylinder];
    Heitmann PRD(01) [out of equilibrium];
    Kreimer AP(06) [Hochschild cohomology];
    Dietrich PRD(09)-a0904 [fluctuations around classical configurations];
    Schroer FP(11)-a1012;
    Binosi & Quadri PRD(12)-a1203 [background-field method];
    Kreimer et al AP(13)-a1208 [graph polynomials and graph cohomology];
    Aastrup & Grimstrup a2008 [from metric structure on space of connections].
Canonical Quantization > s.a. first-class
  and second-class constraints; connection;
  QED; topological field theories.
  * Approaches: Hamiltonian
    (Batalin-Fradkin-Vilkovisky), and Lagrangian (Batalin-Vilkovisky).
  @ General references: DeWitt JMP(61),
    JMP(62);
    Kundt in(66);
    Gribov NPB(78);
    Singer CMP(78);
    Friedman & Papastamatiou NPB(83) [temporal gauge];
    Govaerts ht/99-conf;
    Kanatchikov RPMP(04)ht/03 [precanonical];
    Bracken MPLA(09) [Dirac brackets];
    Kanatchikov RPMP(18)-a1805 [precanonical].
  @ Factor ordering: Kuchař PRD(86);
    McMullan & Paterson JMP(89),
    JMP(89).
  @ Quantum configuration space:
    Ashtekar & Isham CQG(92);
    Pause & Heinzl NPB(98) [Yang-Mills].
  @ Measures on A/G: Ashtekar et al CQG(89) [2+1 general relativity];
    Baez in(94) [1+1 Yang-Mills];
    Ashtekar et al in(94)gq,
    in(94)ht;
    Marolf & Mourão CMP(95)ht/94;
    Ashtekar & Lewandowski JMP(95)gq/94;
    Nair & Yelnikov NPB(04) [3+1];
    Levy mp/05 [compact surface];
    Kelnhofer JMP(08)-a0707 [on compact manifolds, and Gribov ambiguity].
  @ Batalin-Vilkovisky:
    Ordóñez et al PLB(93);
    Dayi IJMPA(96)ht/95;
    Reshetnyak a1412-proc [without  Gribov copies].
  @ Loop representation:
    Gambini & Trias PRD(81),
    LNC(83),
    PRL(84),
    NPB(86);
    Gambini et al PRD(89);
    Loll TMP(92);
    Gambini & Setaro NPB(95) [path representation, with fermions];
    Zapata JMP(97)gq;
    Ashtekar et al JMP(97)ht/96,
    Fleischhack JMP(99) [2D];
    > s.a. lattice gauge theory; Loop
      Transform; QCD.
  @ Spin networks:
    Furmanski & Kolawa NPB(87);
    Baez AiM(96)gq/94;
    Lewandowski & Thiemann CQG(99)gq.
  @ Kodama-Chern-Simons state: Mena CQG(95)gq/94 [non-normalizable];
    Witten gq/03;
    Corichi & Cortez PRD(04)ht/03;
    Cartas-Fuentevilla & Tlapanco-Limón PLB(05)ht [extension];
    > s.a. lqg; quantum-gravity phenomenology.
  @ Other states: Maitra a0804/CMP [gauge-invariant ground state];
    Boulton et al a1708 [bound states in YM-Higgs theory];
    > s.a. coherent states.
  @ Different backgrounds:  Lenz et al PRD(08)-a0803 [static spacetimes];
    Hollands RVMP(08)-a0705 [renormalized, in curved spacetime]
  @ Related topics: Odaka ht/95 [inequivalent quantizations];
    Calixto & Aldaya JPA(99)ht  [group quantization];
    Driver & Hall CMP(99) [Segal-Bargmann transform];
    Muslih et al IJTP(00) [massive];
    Larsson ht/05 [manifestly covariant];
    Freidel et al PLB(06) [solution, 3+1].
Specific Concepts, Effects, Theories
  > s.a. gravitation; Proca Theory;
  QCD [including confinement]; QED;
  topological field theories.
  @ Matter couplings: Gies & Hammerling PRD(05)ht [in world-line, loop-space approach].
  @ Spectrum, 2+1 dimensions: Leigh et al PRL(06)ht/05,
    PRD(07)ht/06,
    CJP(07)-a0704-proc;
    Brits JHEP(07);
    Freidel et al a0801-proc,
    Frasca a1708-proc
      [and 3+1, solution of Schwinger-Dyson equations].
  @ 2D Yang-Mills theory: Oeckl JPA(08)ht/06 [with corners];
    Nguyen a1508
      [perturbation theory vs the full quantum theory];
    Brothier & Stottmeister a1907 [operator-algebraic approach].
  @ Types of theories:
    Dzhunushaliev & Singleton IJTP(99) [spherically symmetric SU(3)];
    Wiesendanger PRD(09)-a0903,
    JModP(14)-a1308 [volume-preserving diffeomorphisms, and proof of renormalizability];
    > s.a. path-integral quantization.
  > Related topics: see Asymptotic
    Freedom; higgs mechanism; phase transitions;
    quantum chaos; thermodynamic systems.
Variations, Generalizations > s.a. non-commutative field theories;
  types of quantum field theories [deformed].
  @ Antibracket formalism: Witten MPLA(90).
  @ Higher-spin fields: Wagenaar & Rijken PRD(09)-a0905;
    Schroer a1410 [Hilbert-space setting].
  @ Non-local: Kleppe & Woodard NPB(92);
    Amorim & Barcelos-Neto JMP(99)ht [massive, canonical vs path integral].
  @ Other variations:
    Reisenberger gq/94-MG7 [world-sheet];
    Lahiri PRD(01) [2-form, renormalizability];
    Biró et al FPL(01)ht [from higher-dimensional classical theory];
    Álvarez-Gaumé & Wadia PLB(01) [on quantum phase space];
    Bertrand & Govaerts JPA(07)-a0704 [topologically massive, canonical];
    Pedro a1911.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2021