|  Topological (Quantum) Field Theories | 
In General > s.a. category [n-categories];
  path-integral quantum field theory.
  * Idea: (Quantum) field
    theories in which correlators depend only on the topology of the manifold.
  * Motivation: They generate
    global smooth invariants for the manifold.
  * Applications: Chern-Simons
    theories have found application in the description of some exotic strongly-correlated
    electron systems and the corresponding concept of topological quantum computing,
    and topological sigma models describe digital memcomputing machines DMMs for
    computing with instantons.
  @ General references: Ivanenko & Sardanashvili MUPB(79);
    Witten CMP(88);
    Baulieu PLB(89);
    Horne NPB(89);
    Myers & Periwal PLB(89);
    in Atiyah 90;
    Rajeev PRD(90);
    Birmingham et al PRP(91);
    Wu CMP(91);
    Roca RNC(93);
    Anselmi CQG(97) [invariants];
    Becchi et al PLB(97) [gauge dependence];
    Vafa ht/00-conf;
    Jones BAMS(09) [development, and subfactor theory];
    Boi IJGMP(09);
    Hellmann PhD-a1102
      [and state sums on triangulated manifolds].
  @ Books and reviews: Kaku 91;
    in Nash 91;
    Fré & Soriani 95;
    Labastida ht/95-conf;
    Labastida & Lozano ht/97-ln;
    Kaul ht/99;
    Schwarz ht/00;
    Labastida ht/01-talk;
    Kaul et al ht/05-en
      [Schwarz-type, including Chern-Simons and BF];
    Labastida & Mariño 05;
    Ivancevic & Ivancevic a0810-ln;
    Qiu a1201-ln;
    Carqueville & Runkel a1705-ln.
  @ Action:
    Labastida & Pernici PLB(88);
    Dayi NPB(90).
  @ Observables: Labastida CMP(89);
    Ouvry & Thompson NPB(90).
  @ Algebraic / geometric structure:
    Crane & Frenkel JMP(94);
    Crane & Yetter pr(94).
  @ BRST approach:
    Birmingham et al NPB(89);
    Chen PRD(90).
  @ Applications: Di Ventra et al a1609 [DMMs and computing with instantons].
  @ Related topics: Atiyah IHES(89) [axioms];
    Birmingham et al NPB(90) [renormalization];
    Gegenberg & Kunstatter AP(94) [partition function];
    Kauffman & Lomonaco SPIE(06)qp,
    qp/06 [q-deformed spin network approach],
    SPIE(07)-a0707-in [and quantum computation];
    > s.a. stochastic quantization.
Specific Theories > s.a. chern-simons theory;
  path-integral approach; yang-mills theories.
  @ Electromagnetism as a topological field theory:
    Rañada LMP(89),
    JPA(92).
  @ General relativity / quantum gravity from topological field theory:
    Toon CQG(94)ht/93;
    Barrett JMP(95)gq;
    Mielke PRD(08),
    GRG(08) [BRST quantization];
    Gielen JPCS(11)-a1109 [with linear constraints];
    Morales et al EPJC(16)-a1602 [from 5D CS theory];
    > s.a. 3D quantum gravity [lqg].
  @ Topological quantum mechanics:
    Dunne et al PRD(90);
    Skagerstam & Stern IJMPA(90) [2+1 dimensions];
    Rogers NPPS(00)ht.
  @ Topological gauge theory: Ouvry et al PLB(89) [supersymmetric, quantization];
    Brooks & Lue JMP(96) [monopoles];
    Losev et al NPB(98) [Gromov-Witten paradigm];
    Boldo et al IJMPA(03)ht,
    IJMPA(04)ht/03,
    NPPS(04)ht [observables];
    Leal & Pineda MPLA(08) [abelian, and Milnor's link invariant];
    Chen IJGMP(13)-a0803 [conceptual, historical];
    Escalante & López-Osio IJPAM(12)-a1203 [Euler and second-Chern classes, Hamiltonian analysis].
  @ Topological gauge theory, deformed: Kondo PRD(98)ht;
    García-Compeán & Paniagua GRG(05)ht/04 [non-commutative].
  @ Topological (super)gravity:
    Chamseddine NPB(90);
    Koehler et al NPB(90);
    > s.a. Topological Gravity.
  @ Gravity and topological matter:
    Gegenberg & Mann PRD(99)ht.
  @ Homotopy quantum field theory:
    Brightwell & Turner m.QA/01,
    Brightwell et al IJMPA(03)m.AT/02;
    Turaev 10;
    Yau a1802 [monograph].
  @ Other theories: Floreanini & Percacci MPLA(90) [pregeometry];
    Gozzi & Reuter PLB(90) [classical mechanics as a topological field theory];
    Birmingham et al IJMPA(90);
    Blau & Thompson AP(91),
    PLB(91) [forms];
    Witten IJMPA(91) [cohomological];
    Gamboa IJMPA(92);
    Dijkgraaf & Moore CMP(97) [balanced];
    Husain & Jaimungal PRD(99)ht/98 [holographic];
    Adams & Prodanov LMP(00) [Schwarz's, Z];
    Malik JPA(01)ht/00 [2D];
    Ferrari mp/01 [simple cubic model];
    Koroteev & Zayakin proc(07)ht/05 [example based on Morse theory];
    Husain PRL(06)
      [harmonic oscillator duals and background-independence in quantum gravity];
    Mathews AHP(14)-a1201 [elementary, combinatorial theory];
    > s.a. BF theory; m-theory.
Related Topics > s.a. 4D manifolds;
  dynamical systems; spin networks [invariants].
  @ On manifolds with boundary: Husain & Jaimungal PRD(99)ht/98;
    Bel'kov et al a0907 [triangulated boundary];
    Amoretti et al PRD(14)-a1410;
    Corichi & Vukašinac IJMPD-a1809 [Hamiltonian analysis].
  @ On lattices:
    Wheater PLB(89) [Ising-like],
    PLB(91) [gauge theories];
    Bonzom & Smerlak LMP(10)-a1004 [degree of bubble divergences];
    Bietenholz et al JHEP(10)-a1009 [actions].
  @ (2+1)D theories and (3+1)D theories with defects: Dittrich JHEP(17)-a1701 [and and self-dual quantum geometries]. 
  @ And knots / links: Horowitz & Srednicki CMP(90) [linking numbers];
    Blanchet et al Top(95) [knot invariants];
    Leal PRD(02);
    Lemes et al PLB(99) [linking observables];
    Labastida ht/00-conf,
    ht/00-ln;
    Leal & Pineda MPLA(08)-a0705 [topological field theory of Milnor's link invariant];
    Sleptsov MPLA(14) [generalization, superpolynomial invariants of knots];
    > s.a. knot invariants.
  @ Other topics:
    Eguchi MPLA(92) [and singularities];
    Toon MPLA(94)ht/92 [particle content];
    Archer JGP(95) [on PL manifolds];
    Brooks & Lifschytz NPB(95)
      [Donaldson topological invariants and quantum gravity];
    Mukku et al JPA(97) [order-chaos];
    Freedman et al CMP(02)qp/00 [and quantum computing];
    Rovelli & Speziale GRG(07)
      [expansion of field theories around a topological field theory];
    Freed BAMS(13)-a1210 [extended topological quantum field theories and the cobordism hypothesis];
    Carqueville a1607-proc
      [2D with defects, functorial and algebraic description, intro].
  > Phenomenology:
    see cosmological-constant problem.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 feb 2019